6,990 research outputs found
Recent Advances in the Synthetic and Mechanistic Aspects of the Ruthenium-catalyzed Carbon-heteroatom Bond Forming Reactions of Alkenes and Alkynes
The group’s recent advances in catalytic carbon-to-heteroatom bond forming reactions of alkenes and alkynes are described. For the C–O bond formation reaction, a well-defined bifunctional ruthenium-amido catalyst has been successfully employed for the conjugate addition of alcohols to acrylic compounds. The ruthenium-hydride complex (PCy3)2(CO)RuHCl was found to be a highly effective catalyst for the regioselective alkyne-to-carboxylic acid coupling reaction in yielding synthetically useful enol ester products. Cationic ruthenium-hydride catalyst generated in-situ from (PCy3)2(CO)RuHCl/HBF4·OEt2 was successfully utilized for both the hydroamination and related C–N bond forming reactions of alkenes. For the C–Si bond formation reaction, regio- and stereoselective dehydrosilylation of alkenes and hydrosilylation of alkynes have been developed by using a well-defined ruthenium-hydride catalyst. Scope and mechanistic aspects of these carbon-to-heteroatom bond forming reactions are discussed
Regioselective Formation of α-Vinylpyrroles from the Ruthenium-Catalyzed Coupling Reaction of Pyrroles and Terminal Alkynes Involving C–H Bond Activation
The cationic ruthenium catalyst Ru3(CO)12/NH4PF6 was found to be highly effective for the intermolecular coupling reaction of pyrroles and terminal alkynes to give gem-selective α-vinylpyrroles. The carbon isotope effect on the α-pyrrole carbon and the Hammett correlation from a series of para-substituted N-arylpyrroles (ρ = −0.90) indicate a rate-limiting C−C bond formation step of the coupling reaction
Scope and Mechanistic Study of the Ruthenium-Catalyzed \u3cem\u3eortho\u3c/em\u3e-C−H Bond Activation and Cyclization Reactions of Arylamines with Terminal Alkynes
The cationic ruthenium hydride complex [(PCy3)2(CO)(CH3CN)2RuH]+BF4- was found to be a highly effective catalyst for the C−H bond activation reaction of arylamines and terminal alkynes. The regioselective catalytic synthesis of substituted quinoline and quinoxaline derivatives was achieved from the ortho-C−H bond activation reaction of arylamines and terminal alkynes by using the catalyst Ru3(CO)12/HBF4·OEt2. The normal isotope effect (kCH/kCD = 2.5) was observed for the reaction of C6H5NH2 and C6D5NH2 with propyne. A highly negative Hammett value (ρ = −4.4) was obtained from the correlation of the relative rates from a series of meta-substituted anilines, m-XC6H4NH2, with σp in the presence of Ru3(CO)12/HBF4·OEt2 (3 mol % Ru, 1:3 molar ratio). The deuterium labeling studies from the reactions of both indoline and acyclic arylamines with DC⋮CPh showed that the alkyne C−H bond activation step is reversible. The crossover experiment from the reaction of 1-(2-amino-1-phenyl)pyrrole with DC⋮CPh and HC⋮CC6H4-p-OMe led to preferential deuterium incorporation to the phenyl-substituted quinoline product. A mechanism involving rate-determining ortho-C−H bond activation and intramolecular C−N bond formation steps via an unsaturated cationic ruthenium acetylide complex has been proposed
Scope and Mechanistic Investigations on the Solvent-Controlled Regio- and Stereoselective Formation of Enol Esters from the Ruthenium-Catalyzed Coupling Reaction of Terminal Alkynes and Carboxylic Acids
The ruthenium-hydride complex (PCy3)2(CO)RuHCl was found to be a highly effective catalyst for the alkyne-to-carboxylic acid coupling reaction to give synthetically useful enol ester products. A strong solvent effect was observed for the ruthenium catalyst in modulating the activity and selectivity; the coupling reaction in CH2Cl2 led to the regioselective formation of gem-enol ester products, while the stereoselective formation of (Z)-enol esters was obtained in THF. The coupling reaction was found to be strongly inhibited by PCy3. The coupling reaction of both PhCO2H/PhC≡CD and PhCO2D/PhC≡CH led to extensive deuterium incorporation on the vinyl positions of the enol ester products. An opposite Hammett value was observed when the correlation of a series of para-substituted p-X-C6H4CO2H (X = OMe, CH3, H, CF3, CN) with phenylacetylene was examined in CDCl3 (ρ = +0.30) and THF (ρ = −0.68). Catalytically relevant Ru-carboxylate and -vinylidene-carboxylate complexes, (PCy3)2(CO)(Cl)Ru(κ2-O2CC6H4-p-OMe) and (PCy3)2(CO)(Cl)RuC(═CHPh)O2CC6H4-p-OMe, were isolated, and the structure of both complexes was completely established by X-ray crystallography. A detailed mechanism of the coupling reaction involving a rate-limiting C−O bond formation step was proposed on the basis of these kinetic and structural studies. The regioselective formation of the gem-enol ester products in CH2Cl2 was rationalized by a direct migratory insertion of the terminal alkyne via a Ru-carboxylate species, whereas the stereoselective formation of (Z)-enol ester products in THF was explained by invoking a Ru-vinylidene species
Regioselective Intermolecular Coupling Reaction of Arylketones and Alkenes Involving C-H Bond Activation Catalyzed by an \u3cem\u3ein Situ\u3c/em\u3e Formed Cationic Ruthenium-Hydride Complex
The cationic ruthenium hydride complex, formed in situ from the treatment of the tetranuclear ruthenium hydride complex {[(PCy3)(CO)RuH]4(μ4-O)(μ3-OH)(μ2-OH)} with HBF4·OEt2, was found to be a highly effective catalyst for the intermolecular coupling reaction of arylketones and 1-alkenes to give the substituted indene and ortho-C−H insertion products. The formation of the indene products resulted from the initial alkene isomerization followed by regioselective ortho-C−H insertion of 2-alkene and dehydrative cyclization. The preliminary mechanistic studies revealed a rapid and reversible ortho-C−H bond activation followed by the rate-limiting C−C bond formation step for the coupling reaction
Efficient Dehydrogenation of Amines and Carbonyl Compounds Catalyzed by a Tetranuclear Ruthenium-μ-oxo-μ-hydroxo-hydride Complex
The tetranuclear ruthenium-μ-oxo-μ-hydroxo-hydride complex {[(PCy3)(CO)RuH]4(μ4-O)(μ3-OH)(μ2-OH)} (1) was found to be a highly effective catalyst for the transfer dehydrogenation of amines and carbonyl compounds. For example, the initial turnover rate of the dehydrogenation of 2-methylindoline was measured to be 1.9 s−1 with a TON of 7950 after 1 h at 200 °C. The extensive H/D scrambling patterns observed from the dehydrogenation reaction of indoline-N-d1 and indoline-α-d2 suggest a monohydride mechanistic pathway with the C−H bond activation rate-limiting step
Chain-Selective and Regioselective Ethylene and Styrene Dimerization Reactions Catalyzed by a Well-Defined Cationic Ruthenium-Hydride Complex: New Insights on the Styrene Dimerization Mechanism
The cationic ruthenium hydride complex [(η6-C6H6)(PCy3)(CO)RuH]+BF4− was found to be a highly regioselective catalyst for the ethylene dimerization reaction to give 2-butene products (TOF = 1910 h−1, \u3e95% selectivity for 2-butenes). The dimerization of styrene exclusively produced the head-to-tail dimer (E)-PhCH(CH3)CH═CHPh at an initial turnover rate of 2300 h−1. A rapid and extensive H/D exchange between the vinyl hydrogens of styrene-d8 and 4-methoxystyrene was observed within 10 min without forming the dimer products at room temperature. The inverse deuterium isotope effect of kH/kD = 0.77 ± 0.10 was measured from the first-order plots on the dimerization reaction of styrene and styrene-d8 in chlorobenzene at 70 °C. The pronounced carbon isotope effect on both vinyl carbons of styrene as measured by using Singleton’s method (13C(recovered)/13C(virgin) at C1 = 1.096 and C2 = 1.042) indicates that the C−C bond formation is the rate-limiting step for the dimerization reaction. The Eyring plot of the dimerization of styrene in the temperature range of 50−90 °C led to ΔH⧧ = 3.3(6) kcal/mol and ΔS⧧ = −35.5(7) eu. An electrophilic addition mechanism has been proposed for the dimerization of styrene
Intermolecular Dehydrative Coupling Reaction of Arylketones with Cyclic Alkenes Catalyzed by a Well-Defined Cationic Ruthenium-Hydride Complex: A Novel Ketone Olefination Method via Vinyl C–H Bond Activation
The cationic ruthenium−hydride complex [(η6-C6H6)(PCy3)(CO)RuH]+BF4− was found to be a highly effective catalyst for the intermolecular olefination reaction of aryl ketones with cycloalkenes. The preliminary mechanistic analysis revealed that an electrophilic ruthenium−vinyl complex is the key species for mediating both vinyl C−H bond activation and the dehydrative olefination steps of the coupling reaction
Chemoselective Formation of Unsymmetrically Substituted Ethers from Catalytic Reductive Coupling of Aldehydes and Ketones with Alcohols in Aqueous Solution
A well-defined cationic Ru–H complex catalyzes reductive etherification of aldehydes and ketones with alcohols. The catalytic method employs environmentally benign water as the solvent and cheaply available molecular hydrogen as the reducing agent to afford unsymmetrical ethers in a highly chemoselective manner
Scope and Mechanistic Analysis for Chemoselective Hydrogenolysis of Carbonyl Compounds Catalyzed by a Cationic Ruthenium Hydride Complex with a Tunable Phenol Ligand
A cationic ruthenium hydride complex, [(C6H6)(PCy3)(CO)RuH]+BF4– (1), with a phenol ligand was found to exhibit high catalytic activity for the hydrogenolysis of carbonyl compounds to yield the corresponding aliphatic products. The catalytic method showed exceptionally high chemoselectivity toward the carbonyl reduction over alkene hydrogenation. Kinetic and spectroscopic studies revealed a strong electronic influence of the phenol ligand on the catalyst activity. The Hammett plot of the hydrogenolysis of 4-methoxyacetophenone displayed two opposite linear slopes for the catalytic system 1/p-X-C6H4OH (ρ = −3.3 for X = OMe, t-Bu, Et, and Me; ρ = +1.5 for X = F, Cl, and CF3). A normal deuterium isotope effect was observed for the hydrogenolysis reaction catalyzed by 1/p-X-C6H4OH with an electron-releasing group (kH/kD = 1.7–2.5; X = OMe, Et), whereas an inverse isotope effect was measured for 1/p-X-C6H4OH with an electron-withdrawing group (kH/kD = 0.6–0.7; X = Cl, CF3). The empirical rate law was determined from the hydrogenolysis of 4-methoxyacetophenone: rate = kobsd[Ru][ketone][H2]−1 for the reaction catalyzed by 1/p-OMe-C6H4OH, and rate = kobsd[Ru][ketone][H2]0 for the reaction catalyzed by 1/p-CF3-C6H4OH. Catalytically relevant dinuclear ruthenium hydride and hydroxo complexes were synthesized, and their structures were established by X-ray crystallography. Two distinct mechanistic pathways are presented for the hydrogenolysis reaction on the basis of these kinetic and spectroscopic data
- …