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Abstract: The group’s recent advances in catalytic carbon-to-heteroatom 

bond forming reactions of alkenes and alkynes are described. For the C–O 

bond formation reaction, a well-defined bifunctional ruthenium-amido catalyst 

has been successfully employed for the conjugate addition of alcohols to 

acrylic compounds. The ruthenium-hydride complex (PCy3)2(CO)RuHCl was 

found to be a highly effective catalyst for the regioselective alkyne-to-

carboxylic acid coupling reaction in yielding synthetically useful enol ester 

products. Cationic ruthenium-hydride catalyst generated in-situ from 

(PCy3)2(CO)RuHCl/HBF4·OEt2 was successfully utilized for both the 

hydroamination and related C–N bond forming reactions of alkenes. For the 

C–Si bond formation reaction, regio- and stereoselective dehydrosilylation of 

alkenes and hydrosilylation of alkynes have been developed by using a well-
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defined ruthenium-hydride catalyst. Scope and mechanistic aspects of these 
carbon-to-heteroatom bond-forming reactions are discussed. 

Keywords: ruthenium catalyst, alkene, alkyne, carbon-heteroatom bond 

1. Introduction 

Designing effective catalytic carbon-to-heteroatom (C–X; X = N, 

O, Si) bond formation reactions constitutes an active area of research 

that has a wide range of potential applications in both fine and 

industrial chemical syntheses. For example, transition metal-catalyzed 

hydroamination of alkenes and alkynes is a highly effective C–N bond 

forming method to produce elaborated organic amines in an atom-

economical way [1]. While remarkable progress has been achieved in 

developing catalytic methods for both inter- and intramolecular 

hydroamination of alkenes, dienes and alkynes during the last decades 

[2], anti-Markovnikov-selective hydroamination of simple alkenes still 

remains an elusive goal [3]. For C–O bond formation reactions via O-H 

bond activation, late transition metal catalysts have been found to be 

particularly effective in promoting a number of industrially significant 

processes, such as Wacker-type oxidation reaction and water-gas shift 

and hydration reactions, in producing oxygenated organic products 

[4]. Late transition metal catalysts have also been found to be 

effective for mediating C–Si bond formation reactions of alkenes and 

alkynes [5]. Homogeneous catalytic hydrosilylation and related 

oxidative silylation reactions have been widely utilized in both 

commercial syntheses of silicone rubbers [6] as well as in the 

synthesis of organosilicon compounds [7]. Current challenges in these 

catalytic C–X bond formation reactions are: to develop chemo- and 

regioselective catalytic systems which can lead to an extension of the 

reaction scope, and to establish both clear mechanistic pathways and 

the nature of reactive intermediate species for such processes. For a 

number of years, we have been investigating the fundamental aspects 

of catalytic bond activation reactions, and this report presents a 

summary of the group’s synthetic and mechanistic efforts in ruthenium 

catalyzed C–X bond formation reactions. 
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2. Catalytic C–O bond formation reactions via O–H 

bond activation: conjugate addition of alcohols to 

acrylic compounds 

Conjugate addition of heteroatom nucleophiles to α,β-

unsaturated carbonyl compounds has been shown to be an effective 

C–O bond forming method for producing biologically important β-

amino acid derivatives and β-alkoxyketones [8]. Compared to the 

traditional methods based on stoichiometric reagents, transition metal-

catalyzed conjugate addition reaction provides an efficient method for 

forming new C–O bonds in chemo- and stereoselective manner under 

environmentally benign conditions. 

 

(1) 

We discovered that the ruthenium-acetamido complex 1 is a highly 

active catalyst for the conjugate addition reactions of alcohols [9]. In a 

typical setting, the treatment of acrylonitrile with excess amount of an 

alcohol in the presence of 1 (0.1–0.5 mol %) in CH2Cl2 cleanly led to 

the addition product at room temperature (Eq 1). The amido complex 

1 exhibited uniquely high catalytic activity among selected ruthenium 

complexes under mild conditions without using any additives. 

Mechanism of the conjugate addition reaction was examined. 

First, the reaction rate was found to be virtually independent of [PCy3] 

at room temperature. A considerably lower reaction rate in 

coordinating solvents such as Et2O and THF (kobs = 1.6 × 10−4 s−1 and 

9.6 × 10−5 s−1, respectively) than in non-coordinating ones such as 

CH2Cl2 and benzene (kobs = 2.3 × 10−4 s−1 and 6.5 × 10−4 s−1, 

respectively) suggests a strong inhibition by coordinating solvent 

molecules. The Hammett correlation from a series of para-substituted 

benzyl alcohols p-X-C6H4CH2OH (X = OMe, CH3, H, Cl; ρ = +0.18) 

showed that the reaction is moderately promoted by the alcohol 

substrate with electron-withdrawing group. Also, the most pronounced 
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carbon isotope effect was observed on the β-carbon of the carbonyl 

substrate as analyzed by using Singleton’s carbon isotope 

measurement technique [10]. On the basis of these results, we 

proposed a mechanism of the conjugate addition reaction involving the 

bifunctional ruthenium-amido catalyst involving “bifunctional” 

ruthenium-amido catalyst for mediating heterolytic bond activation 

reaction (Scheme 1). The key features of the proposed mechanism 

involve a Lewis acidic ruthenium center for facilitating N-coordination 

of acrylonitrile and the basic amido ligand for promoting heterolytic O–

H bond cleavage of the alcohol substrate. 

 

Scheme 1 

2.2. Formation of enol esters from the coupling reaction 

of alkynes and carboxylic acids 

Enol esters are a versatile class of precursors for a variety of 

synthetically important organic transformations such as asymmetric 

hydrogenation and Aldol- and Mannich-type of condensation reactions 

[11]. Compared to the classical methods that utilize stoichiometric 

amounts of strong base or toxic Hg salts, transition metal-catalyzed 

alkyne-to-carboxylic acid coupling reaction offers considerable 

advantages in terms of increasing synthetic efficiency as well as for 

reducing waste byproducts. However, despite such salient features, its 

synthetic potential has not been fully exploited in part because the 
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catalytic method typically produces a mixture of gem- and (E)/(Z)-enol 

ester products [12]. In general, transition metal-catalyzed alkyne-to-

carboxylic acid coupling reaction has been found to favor anti-

Markovnikov addition of carboxylic acids to produce a mixture of (E)- 

and (Z)-enol esters over gem-enol ester products, but recent efforts 

have led to the development of regioselective formation of gem-enol 

esters by using Ru and Rh catalysts [13]. For example, Goossen and 

co-workers reported that the regioselectivity of the coupling reaction 

could be controlled by using different base in forming both 

Markovnikov (Na2CO3) and the anti-Markovnikov addition products 

(DMAP) [13c]. Dixneuf achieved a regioselective 2:1 alkyne-to-

carboxylic acid coupling reaction to form the dienyl esters by using 

Cp*Ru(COD)Cl catalyst, in which a ruthenacyclopentadiene complex 

has been proposed as the key intermediate species for the coupling 

reaction [14]. Both intra- and intermolecular versions of the catalytic 

alkyne-to-carboxylic acid coupling methods have been successfully 

applied to the synthesis of complex organic molecules [15]. 

We recently discovered that a coordinatively usaturated 

ruthenium-hydride complex (PCy3)2(CO)RuHCl (2) exhibits uniquely 

high catalytic activity and selectivity patterns for the alkyne-to-

carboxylic acid coupling reaction in giving the enol ester products 

(Scheme 2) [16]. A particularly remarkable feature for the catalyst 2 is 

that excellent degree of solvent-control effect was observed in 

facilitating regio- and stereoselective formation of the enol ester 

products. Thus, the coupling reaction in CH2Cl2 led to the exclusive 

formation of the gem-enol ester product 3 for both aliphatic and aryl-

substituted terminal alkynes. In contrast, the coupling reaction for 

aryl-substituted alkynes in THF predominantly gave the (Z)-enol ester 

products (Z)-4. A relatively low catalyst loading (1–2 mol %) was used 

for the coupling reaction, and the enol ester products were isolated in 

high yields after a simple column chromatography on silica gel. 

 

Scheme 2 
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(2) 

The synthetic efficacy of the ruthenium catalyst 2 was further 

extended to the coupling reaction of carboxylic acids with propargylic 

alcohols (Eq 2). The catalyst 2 was found to catalyze the coupling 

reaction of carboxylic acids with propargylic alcohols to give the ester 

products 5 in high yields, in which the exclusive formation of the 

acetomethyl ester product 5 was resulted from the Markovnikov-

selective hydration of the alkynes. Previously, the formation of 

ketoesters has been explained via a Markovnikov-selective addition 

followed by an intramolecular transesterification steps [17]. 

We performed detailed kinetic and mechanistic studies on the 

coupling reaction. First, inverse rate dependence on added [PCy3] 

indicates that active Ru catalyst is formed by a reversible dissociation 

of the phosphine ligand. The treatment of PhCO2D with PhC≡CH (2.0 

equiv) and 2 (2 mol %) in CH2Cl2 at 95 °C yielded the gem-enol ester 

product 3 with ca. 30% D on both vinyl positions as determined by 1H 

and 2H NMR (Scheme 3). Conversely, the reaction of PhCO2H with 

PhC≡CD (2 equiv) in THF formed the products (Z)-4 with nearly equal 

amounts of the deuterium (62–65%) on both vinyl positions. In a 

control experiment, the treatment of PhCO2D with PhC≡CH (2.0 equiv) 

in the presence of 2 (2 mol %) led to almost complete H/D exchange 

within 10 min at 95 °C prior to the product formation. These results 

indicate that the H/D exchange between the acid and alkynyl 

hydrogens is rapid and reversible, and that neither the alkynyl C–H 

bond nor the carboxylic acid O–H bond activation step is rate-limiting 

for the coupling reaction. 
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Scheme 3 

The catalytically relevant ruthenium-carboxylate and -

vinylcarboxylate complexes have been successfully isolated from the 

reaction of 2 with a carboxylic acid and a terminal alkyne (Scheme 4). 

For example, the treatment of 2 with p-OMe-C6H4CO2H in CH2Cl2 led to 

the clean formation of the ruthenium-carboxylate complex 6. The 

further reaction of the ruthenium-carboxylate complex 6 with a 

terminal alkyne led to the coupling product 7, which clearly implicates 

the formation of the (Z)-enol ester product (Z)-4. 

 

Scheme 4 

The successful isolation of the catalytically relevant complexes 6 

and 7 enabled us to further examine kinetics for the formation of these 

complexes. The treatment of 2 with excess p-OMe-C6H4CO2H (10 

equiv) and HC≡CPh (15 equiv) in THF initially formed the previously 

known ruthenium-vinyl complex 8 after 15 min at room temperature. 

The vinyl complex 8 was slowly converted to the carboxylate complex 

6, which in turn was converted to the vinyl-carboxylate complex 7 

upon warming to 60 °C. The kinetics of the conversion of the vinyl 

complex 8 to the vinylcarboxylate complex 7 was successfully fitted to 
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the two-consecutive reaction kinetics (k1 = 0.039 min−1 and k2 = 

0.013 min−1). 

We proposed a mechanism of the coupling reaction involving a 

coordinatively unsaturated ruthenium-carboxylate complex 9 as one of 

the key intermediate species (Scheme 5). The phosphine inhibition 

study suggests that the catalytically active 16 e- complex 9 is formed 

from the Ru-carboxylate complex 6 by a reversible phosphine 

dissociation. For the coupling reaction in a non-coordinating solvent 

CH2Cl2, the direct migratory insertion of the internal carbon of the 

alkyne substrate to Ru-O bond would be sterically preferred over to 

the terminal carbon in giving the gem-enol ester product 3. The dative 

coordination of carboxylic oxygen atom should also promote the 

insertion by stabilizing intermediate species. On the other hand, the 

formation of (Z)-enol ester product (Z)-4 is rationalized by invoking 

the formation of Ru-vinylidene species 10. The ability of the ruthenium 

catalyst to promote the acetylene-to-vinylidene rearrangement seems 

to be a determining factor for the stereoselective formation of (Z)-enol 

ester products, and in this regard, the coordinating solvent THF should 

facilitate such rearrangement by stabilizing a coordinatively 

unsaturated Ru-vinylidene species. 
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Scheme 5 Proposed mechanism of the coupling reaction of carboxylic acids 

and terminal alkynes. 

3. Catalytic C–C and C–N bond formation 

reactions via N–H bond activation: 

hydroamination of ethylene and dienes 

Since Milstein’s pioneering report on Ir-catalyzed 

hydroamination reaction of norbornene [18], a number of highly 

effective late transition metal catalysts have developed for the 

hydroamination of alkenes and dienes as well as for asymmetric 

version of the reaction [2]. Recently, several groups have also 

achieved anti-Markovnikov-selective hydroamination of α-olefins and 

intramolecular hydroamination of unactivated alkenes by using Pd and 

Ru catalysts [3]. One of the current challenges for the hydroamination 

reaction centers on the development of practical catalytic systems, 

which leads to an extension of reaction scope, and are applicable to 

asymmetric synthesis of chiral amines. 
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We found that the cationic ruthenium-hydride complex, formed 

in-situ from 2/HBF4·OEt2, is an effective catalyst for the 

hydroamination of ethylene and dienes (Scheme 6) [19]. For example, 

the treatment of aniline with ethylene in the presence of 2/HBF4·OEt2 

(5 mol %) in benzene at 80 °C gave a ~1:1 mixture of N-ethylaniline 

and 2-methylquinoline in 71% combined yield. Only ethylene was 

found to give the coupling products among selected alkenes; no 

activity was observed with α-olefins. In contrast, both primary 

arylamines and secondary benzocyclic amines reacted smoothly with 

1,3-dienes at a considerably lower temperature (20–50 °C) to form 

the Markovnikov addition product 11 predominantly over the anti-

Markovnikov addition product 12. No ortho-C–H bond insertion 

product was observed for these dienes. The observation of the normal 

isotope effect of kNH/kND = 2.2 (aniline and aniline-d7 at 80 °C) and the 

Hammett ρ = −0.43 (correlation of para-substituted p-X-C6H4NH2) 

suggest of an N-H bond activation rate-limiting step for the 

hydroamination reaction. 

 

Scheme 6 

3.1. Cyclic imine vs N-silylamine formation 

An unusually selective dehydrogenative coupling reaction of 

cyclic amines and alkenes has been discovered by using the 

ruthenium-hydride catalyst 2 (Scheme 7) [20]. The coupling reaction 
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of secondary cyclic amines with unactivated alkenes preferentially 

gave the cyclic imine products 13, in which both α-C–H and N–H 

bonds of amines have been selectively activated. In contrast, the 

reaction with a vinylsilane selectively yielded the N-silylation products 

14. The catalytically active anionic ruthenium-amido complex was 

isolated from the reaction mixture, and its structure was established 

by X-ray crystallography. The preliminary mechanistic studies 

suggested that both C–H and N–H bond activation steps are mediated 

by a highly unsaturated ruthenium-amido species. 

 

Scheme 7 

4. Catalytic C–Si bond formation reactions: regio- 

and stereoselective hydrosilylation and oxidative 

silylation of alkenes and alkynes 

Considerable efforts to develop new catalytic methods for 

vinylsilanes have been in part motivated by their versatility as 

reagents for both fine chemical and polymer synthesis [21]. Late 

transition metal catalysts such as H2PtCl6 and (PPh3)3RhCl have been 

commonly used for the hydrosilylation of alkynes [5], but the catalytic 

method has been known to produce a mixture of vinylsilanes and other 

byproducts. Catalytic oxidative silylation reaction has been emerged as 

a viable alternative method for forming vinylsilanes, as exemplified by 

Wakatsuki’s ruthenium-catalyzed dehydrosilylation of alkenes [22]. On 
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the basis of detailed kinetic and mechanistic study by using well-

defined cationic Co and Pd complexes, Brookhart proposed a 

mechanism of the dehydrogenative silylation reactions of alkenes, as 

the vinylsilane formation could not be readily explained by a classical 

Chalk-Harrod mechanism [23]. 

 

(3) 

We initially found that the ruthenium-hydride complex 2 is an 

active catalyst for the dehydrogenative silylation of alkenes (Eq 3) 

[24]. For example, the treatment of styrene and 1.5 equiv of 

CH2=CHSiEt3 in the presence of 2 (1.0 mol %) in CH2Cl2 solution at 

95 °C led to the dehydrosilylation product (E)-15 (>95% yield after 4 

h). The formation of a trace amount of the hydrosilylation product and 

the homocoupling product Et3SiCH=CHSiEt3 was also detected by the 

GC. 

Regio- and stereoselective formation of vinylsilanes has also 

been achieved from the silylation reactions of alkenes and alkynes 

(Scheme 8) [24, 25]. Regioselective dehydrosilylation of α-olefins with 

HSiEt3 was achieved in forming trans-vinylsilane (E)-15, while the 

analogous treatment of terminal alkynes and HSiEt3 led to the 

exclusive formation of the cis-vinylsilane product (E)-15. In the latter 

case, a mixture of cis and trans products (Z)/(E)-15 was resulted from 

the alkynes with sterically demanding group (R = Cy, t-Bu). The 

preliminary mechanistic investigations suggest the involvement of a 

Ru-vinyl species, but much research still awaits for establishing the 

detailed reaction mechanism and for elucidating the factors governing 

the product formation. Transition metal-catalyzed alkyne hydrosilation 

reaction has been successfully employed in the synthesis of complex 

organic molecules as well as polymeric and surface materials [26]. 

http://dx.doi.org/10.1016/j.jorganchem.2010.08.002
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Scheme 8 

5. Conclusions 

The group’s recent advances in catalytic C–X bond formation 

reactions (X = O, N, Si) have been highlighted. The bifunctional 

ruthenium-amido catalyst 1 was found to be effective for the 

conjugate addition of alcohols to acrylic compounds. Regioselective 

alkyne-to-carboxylic acid coupling reaction as well as the oxidative 

silylation of alkenes and alkynes have been realized by using a well-

defined 16-electron ruthenium-hydride catalyst 2. The cationic 

ruthenium-hydride catalyst generated in-situ from 2/HBF4·OEt2 was 

successfully employed for the hydroamination and related C–N bond 

forming reactions. Mechanistic knowledge gained from these study 

would be invaluable in designing the next generation of metal 

catalysts. 
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