research

Scope and Mechanistic Study of the Ruthenium-Catalyzed \u3cem\u3eortho\u3c/em\u3e-C−H Bond Activation and Cyclization Reactions of Arylamines with Terminal Alkynes

Abstract

The cationic ruthenium hydride complex [(PCy3)2(CO)(CH3CN)2RuH]+BF4- was found to be a highly effective catalyst for the C−H bond activation reaction of arylamines and terminal alkynes. The regioselective catalytic synthesis of substituted quinoline and quinoxaline derivatives was achieved from the ortho-C−H bond activation reaction of arylamines and terminal alkynes by using the catalyst Ru3(CO)12/HBF4·OEt2. The normal isotope effect (kCH/kCD = 2.5) was observed for the reaction of C6H5NH2 and C6D5NH2 with propyne. A highly negative Hammett value (ρ = −4.4) was obtained from the correlation of the relative rates from a series of meta-substituted anilines, m-XC6H4NH2, with σp in the presence of Ru3(CO)12/HBF4·OEt2 (3 mol % Ru, 1:3 molar ratio). The deuterium labeling studies from the reactions of both indoline and acyclic arylamines with DC⋮CPh showed that the alkyne C−H bond activation step is reversible. The crossover experiment from the reaction of 1-(2-amino-1-phenyl)pyrrole with DC⋮CPh and HC⋮CC6H4-p-OMe led to preferential deuterium incorporation to the phenyl-substituted quinoline product. A mechanism involving rate-determining ortho-C−H bond activation and intramolecular C−N bond formation steps via an unsaturated cationic ruthenium acetylide complex has been proposed

    Similar works