71 research outputs found

    Financial performance of groups of companies in Poland against the background of historical determinants and knowledge management procedures applied

    Get PDF
    Polish businesses are passing the fifteen year mark of the free market experience. The important processes that could be observed during that time include the formation of groups of companies. What were the establishment paths of these multiple organisations and what was the impact of historical determinants on their operation and financial performance? What is the extent of contribution of subsidiaries to the financial performance of the groups? And finally what are the main drivers of their effectiveness in the context of group management system applied and knowledge management procedures? This paper attempts to provide answers to these questions. It presents insights, observations and selected findings of research conducted over the period of the last five years. It is shown that the operation of these organisations is on the one hand strongly determined by historical factors, and on the other the strength of this impact diminishes with time. Groups of companies see positive operational changes, reflected mainly in improved financial performance, growing significance of subsidiaries and the enhanced effectiveness of the management systems applied which are broadly based on knowledge management procedures

    On Blowup for time-dependent generalized Hartree-Fock equations

    Full text link
    We prove finite-time blowup for spherically symmetric and negative energy solutions of Hartree-Fock and Hartree-Fock-Bogoliubov type equations, which describe the evolution of attractive fermionic systems (e. g. white dwarfs). Our main results are twofold: First, we extend the recent blowup result of [Hainzl and Schlein, Comm. Math. Phys. \textbf{287} (2009), 705--714] to Hartree-Fock equations with infinite rank solutions and a general class of Newtonian type interactions. Second, we show the existence of finite-time blowup for spherically symmetric solutions of a Hartree-Fock-Bogoliubov model, where an angular momentum cutoff is introduced. We also explain the key difficulties encountered in the full Hartree-Fock-Bogoliubov theory.Comment: 24 page

    Instabilities in the dissolution of a porous matrix

    Full text link
    A reactive fluid dissolving the surrounding rock matrix can trigger an instability in the dissolution front, leading to spontaneous formation of pronounced channels or wormholes. Theoretical investigations of this instability have typically focused on a steadily propagating dissolution front that separates regions of high and low porosity. In this paper we show that this is not the only possible dissolutional instability in porous rocks; there is another instability that operates instantaneously on any initial porosity field, including an entirely uniform one. The relative importance of the two mechanisms depends on the ratio of the porosity increase to the initial porosity. We show that the "inlet" instability is likely to be important in limestone formations where the initial porosity is small and there is the possibility of a large increase in permeability. In quartz-rich sandstones, where the proportion of easily soluble material (e.g. carbonate cements) is small, the instability in the steady-state equations is dominant.Comment: to be published in Geophysical Research Letter

    On the Mean-Field Limit of Bosons with Coulomb Two-Body Interaction

    Full text link
    In the mean-field limit the dynamics of a quantum Bose gas is described by a Hartree equation. We present a simple method for proving the convergence of the microscopic quantum dynamics to the Hartree dynamics when the number of particles becomes large and the strength of the two-body potential tends to 0 like the inverse of the particle number. Our method is applicable for a class of singular interaction potentials including the Coulomb potential. We prove and state our main result for the Heisenberg-picture dynamics of "observables", thus avoiding the use of coherent states. Our formulation shows that the mean-field limit is a "semi-classical" limit.Comment: Corrected typos and included an elementary proof of the Kato smoothing estimate (Lemma 6.1

    Magnetic Monopoles, Electric Neutrality and the Static Maxwell-Dirac Equations

    Full text link
    We study the full Maxwell-Dirac equations: Dirac field with minimally coupled electromagnetic field and Maxwell field with Dirac current as source. Our particular interest is the static case in which the Dirac current is purely time-like -- the "electron" is at rest in some Lorentz frame. In this case we prove two theorems under rather general assumptions. Firstly, that if the system is also stationary (time independent in some gauge) then the system as a whole must have vanishing total charge, i.e. it must be electrically neutral. In fact, the theorem only requires that the system be {\em asymptotically} stationary and static. Secondly, we show, in the axially symmetric case, that if there are external Coulomb fields then these must necessarily be magnetically charged -- all Coulomb external sources are electrically charged magnetic monopoles

    Existence of global-in-time solutions to a generalized Dirac-Fock type evolution equation

    Full text link
    We consider a generalized Dirac-Fock type evolution equation deduced from no-photon Quantum Electrodynamics, which describes the self-consistent time-evolution of relativistic electrons, the observable ones as well as those filling up the Dirac sea. This equation has been originally introduced by Dirac in 1934 in a simplified form. Since we work in a Hartree-Fock type approximation, the elements describing the physical state of the electrons are infinite rank projectors. Using the Bogoliubov-Dirac-Fock formalism, introduced by Chaix-Iracane ({\it J. Phys. B.}, 22, 3791--3814, 1989), and recently established by Hainzl-Lewin-Sere, we prove the existence of global-in-time solutions of the considered evolution equation.Comment: 12 pages; more explanations added, some final (minor) corrections include

    Setting and analysis of the multi-configuration time-dependent Hartree-Fock equations

    Get PDF
    In this paper we motivate, formulate and analyze the Multi-Configuration Time-Dependent Hartree-Fock (MCTDHF) equations for molecular systems under Coulomb interaction. They consist in approximating the N-particle Schrodinger wavefunction by a (time-dependent) linear combination of (time-dependent) Slater determinants. The equations of motion express as a system of ordinary differential equations for the expansion coefficients coupled to nonlinear Schrodinger-type equations for mono-electronic wavefunctions. The invertibility of the one-body density matrix (full-rank hypothesis) plays a crucial role in the analysis. Under the full-rank assumption a fiber bundle structure shows up and produces unitary equivalence between convenient representations of the equations. We discuss and establish existence and uniqueness of maximal solutions to the Cauchy problem in the energy space as long as the density matrix is not singular. A sufficient condition in terms of the energy of the initial data ensuring the global-in-time invertibility is provided (first result in this direction). Regularizing the density matrix breaks down energy conservation, however a global well-posedness for this system in L^2 is obtained with Strichartz estimates. Eventually solutions to this regularized system are shown to converge to the original one on the time interval when the density matrix is invertible.Comment: 48 pages, 1 figur

    Wormhole formation in dissolving fractures

    Full text link
    We investigate the dissolution of artificial fractures with three-dimensional, pore-scale numerical simulations. The fluid velocity in the fracture space was determined from a lattice-Boltzmann method, and a stochastic solver was used for the transport of dissolved species. Numerical simulations were used to study conditions under which long conduits (wormholes) form in an initially rough but spatially homogeneous fracture. The effects of flow rate, mineral dissolution rate and geometrical properties of the fracture were investigated, and the optimal conditions for wormhole formation determined.Comment: to be published in J. Geophys Re
    • …
    corecore