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Abstract
In this paper, we study the blow-up property of positive mild solutions to the Cauchy
problem of a system of fractional reaction-diffusion equations. For the fundamental

solution P(t, x) of the fractional heat operator ∂t + (–�)
β
2 defined on the whole space

RN , due to the properties of P(t, x) established by H Yosida and some estimates of
P(t, x) developed by L Caffarelli and A Figalli, we first use an iteration method to
establish the estimates of lower bounds of positive mild solutions; then we obtain the
unboundedness of solutions for large time. Finally we give a sufficient condition that
the positive mild solution to a fractional reaction-diffusion system blows up in finite
time.
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1 Introduction
In this paper, we consider the blow-up solutions to the Cauchy problem of a system of
fractional reaction-diffusion equations,

⎧
⎪⎨

⎪⎩

ut + (–�)
β
 u = vp, x ∈ RN , t > ,

vt + (–�)
β
 v = uq, x ∈ RN , t > ,

u(, x) = u(x) ≥ , v(, x) = v(x) ≥ , x ∈ RN ,
(.)

where (–�)
β
 for  < β ≤  is called the fractional power of the Laplacian operator –�, and

u(x), v(x) are nonnegative continuous functions defined on RN (N ≥ ), p, q are positive
constants.

Systems such as (.) arise in the fields like molecular biology, hydrodynamics, and sta-
tistical physics [].

We can find the definition and some elementary properties of the fractional Laplacian
operator in Yosida []. The applications of fractional Laplacian operators can be found in
different fields, we refer the readers to Caffarelli et al. [–], Wang and Tang [, ], and so
on.

It is well known that, for an initial value problem of a pure reaction equation with a
positive source term,

du
dt

= f (u), u() = u, (.)
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its solution blows up in finite time if and only if

T(u) =
∫ +∞

u


f (s)

ds < +∞. (.)

The diffusion process is one of the important processes in mathematical theories and
real world problems [–]. The diffusion and/or the boundary conditions have the ten-
dency to decrease or increase the solution []. This means that, for some reaction-
diffusion equations, the blow-up of solutions may occur, though the corresponding or-
dinary differential equation (ODE) possesses a global attractor. This is called diffusion-
induced blow-up.

Kaplan studied for the first time in a seminal paper [] the blow-up phenomenon of
reaction-diffusion equations in bounded domains. He showed that for a convex source
term f (u) satisfying (.) diffusion cannot prevent blow-up if the initial state is large
enough. Escobedo and Herrero [, ] described the global existence and blow-up of the
solutions of the system (.) with β =  on a bounded domain, that is,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut – �u = vp, x ∈ �, t > ,
vt – �v = uq, x ∈ �, t > ,
u(t, x) = , v(t, x) = , x ∈ ∂�, t > ,
u(, x) = u(x) ≥ , v(, x) = v(x) ≥ , x ∈ �.

(.)

As we know, the traditional partial differential equations (PDEs) are relations between
the values of an unknown function and its derivatives of different orders. If we want to
check whether a PDE holds at a particular point, we need to known only the values of the
function in an arbitrarily small neighborhood, so that all derivatives can be computed. But
a nonlocal equation is a relation for which the opposite happens. In order to check whether
a nonlocal equation holds at a point, information as regards the values of the function far
from that point is needed. Most of the times, this is because the equation involves integral
operators. Usually we call the equations in (.) integral-differential equations.

To a great extent, the study of nonlocal equations is motivated by real world applications.
In recent years, many authors have investigated the blow-up phenomenon of reaction-
diffusion equations with nonlocal source terms or localized source terms subject to Neu-
mann boundary conditions. Wang and Wang [] considered the nonlocal equation

ut – �u =
∫

�

f
(
u(t, x)

)
dx, x ∈ �, t > , (.)

and Chadam et al. [] considered the equation with a localized source term

ut – �u = f
(
u(t, x)

)
, x, x ∈ �, t > , (.)

with homogeneous Neumann boundary values and nonnegative initial data. Under appro-
priate conditions, they proved that the solution blows up in finite time and the blow-up is
set in �, respectively.

For the semilinear parabolic system with nonlocal source terms

{
ut – �u =

∫

�
λepu+qv dx, x ∈ �, t > ,

vt – �v =
∫

�
λepu+qv dx, x ∈ �, t > ,

(.)
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or with localized source terms
{

ut – �u = λepu(t,x)+qv(t,x) dx, x ∈ �, t > ,
vt – �v = λepu(t,x)+qv(t,x) dx, x, x ∈ �, t > ,

(.)

subject to Neumann boundary conditions and initial data, respectively,

∂u
∂ν

(t, x) =
∂v
∂ν

(t, x) = , x ∈ ∂�, t > , (.)

u(, x) = u(x), v(, x) = v(x), x ∈ �, (.)

where � ⊂ RN is a bounded domain with smooth boundary ∂�, and ν is the outward
normal on ∂�, parameters λi > , pi, qi ≥  (i = , ), pq > , the initial functions
u(x), v(x) ∈ C(�) are nonnegative and satisfy the compatibility conditions ∂u

∂ν
= ∂v

∂ν
= 

on ∂�.
If p = q = , the nonlinear reaction-diffusion systems (.) and (.) with homogeneous

Dirichlet boundary conditions have been studied in Li et al. [] and Pedersen and Lin
[]. They obtained the blow-up condition and gave the blow-up set � and established
the asymptotic behavior as

lim
t→T

∣
∣log(T – t)

∣
∣–u(t, x) = , lim

t→T

∣
∣log(T – t)

∣
∣–v(t, x) = , (.)

uniformly on �.
Chen et al. [] considered the reaction-diffusion systems (.) and (.) with homoge-

neous Neumann boundary conditions (.) and the initial conditions (.). They showed
that the solution blows up in finite time T , established the estimates of the blow-up rates,
and described the asymptotic behavior of the solution.

For the blow-up phenomenon of reaction-diffusion equation on an unbounded domain,
there is a classical model:

{
ut = �u + u+α , x ∈ RN , t > ,
u(, x) = u(x), x ∈ RN .

(.)

On the properties of solution to (.) the milestone was the fundamental work of Fujita
[], who proved that (.) has no global positive nontrivial if  < α < 

N , every solution
with arbitrarily small initial data blows up. The same is true for the critical exponent α = 

N ,
as proved by Hayaka []. For α > 

N , solutions with small initial conditions tend to zero
as time t → +∞. For  <  + α ≤  all solutions with bounded initial data are global.

For the generalized quasi-linear equations of the following types:

ut = �φ(u) + f (u), (.)

ut = �φ(u) + f
(
u, |∇u|), (.)

the blow-up results can be found in [] and [], respectively, for various choices of the
functions φ and f .

The nonlocality in the equation can have different sources. In the previous discussion
of the nonlocal reaction-diffusion equations, they just contain the nonlocal source terms
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or the nonlocal boundary conditions. Likewise, the most common approach is perhaps to
study nonlocal diffusions, often given by a term in the equation which is a linear integro-
differential operator. The equations involving the fractional Laplacian are the prime ex-
amples of nonlocal elliptic equations (–�)

β
 u = f with β ∈ (, ), where

–(–�)
β
 u = CN , β

∫

RN

u(x + y) – u(x)
|y|N+β

dy, ∀u ∈ C+∞
c

(
RN)

, (.)

and the integral has to be intended in the principal value sense, –(–�)
β
 is for integro-

differential equations where � is for elliptic PDEs.
Note that the classical PDEs can be recovered from integro-differential equations in

several ways. For example:

�u(x) = lim
β→

[
–(–�)

β
 u(x)

]
= lim

r→

C
rN+

∫

Br

[
u(x + y) – u(x)

]
dy. (.)

In this paper we study the Cauchy problem of a fractional reaction-diffusion system (.).
The blow-up property of solutions to (.) was studied much less. Guedda and Kirane []
considered the blow-up positive solutions to the Cauchy problem of a scalar equation

{
ut + (–�)

β
 u = h(t)u+α , x ∈ RN , t > ,

u(, x) = u(x) ≥ , x ∈ RN ,
(.)

where the nonnegative function h ∈ C[, +∞) satisfies ctσ ≤ h(t) ≤ ctσ for sufficiently
large t and constants c, c > , σ > –. Sugitani [] considered (.) for a general non-
linear term F(u) to instead of u+α . When h ≡  and β =  the problem (.) goes back to
the problem (.), the fundamental work of Fujita [].

When β =  the problem (.) goes back to the problem (.), the fundamental work
was given by Escobedo and Herrero [, ]; Uda [] gave a sufficient condition for blow-
up of all positive solutions. There are some difficulties in the study of the problem (.).
First, the fundamental solution P(t, x) of the fractional heat operator ∂t + (–�)

β
 is more

complicated than the fundamental solution T(t, x) of the heat operator ∂t – �, this will
bring about some obstacles since the fractional power Laplacian is a nonlocal operator.
Second, due to the couple of nonlinear source terms up(t, x) and vq(t, x), it is more difficult
to establish the comparison inequalities to get the blow-up condition. Recently, Pérez [],
Pérez and Villa [, ], Villa [] gave a series of results on the blow-up properties of the
solutions to the Cauchy problem

⎧
⎪⎨

⎪⎩

ut + g(t)(–�) α
 u = h(t)vp, x ∈ RN , t > ,

vt + g(t)(–�)
β
 v = h(t)uq, x ∈ RN , t > ,

u(, x) = u(x) ≥ , v(, x) = v(x) ≥ , x ∈ RN .
(.)

Their method was based on the study of blow-up of a particular system of ordinary differ-
ential equations; these ordinary differential equations were complicated but were useful
to get the blow-up condition.

The treatment in this paper is essentially self-contained and elementary. Different from
the method of Pérez and Villa, we use another method to study the blow-up property of
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positive mild solutions to the Cauchy problem (.). Our method is based on the funda-
mental solution P(t, x) of the fractional heat operator ∂t + (–�)

β
 defined on the whole

space RN and is more in the spirit of the properties of P(t, x) established by Yosida [] and
some estimates of P(t, x) developed by Caffarelli and Figalli []. We first use an iteration
method to establish the estimates of lower bounds of positive mild solutions, then we ob-
tain the unboundedness of solutions for large time. Finally we give a sufficient condition
for the positive mild solution to a fractional reaction-diffusion system to blow up in finite
time.

The associated integral system of (.) is

{
u(t, x) =

∫

RN P(t, x – y)u(y) dy +
∫ t


∫

RN P(t – s, x – y)vp(s, y) dy ds,
v(t, x) =

∫

RN P(t, x – y)v(y) dy +
∫ t


∫

RN P(t – s, x – y)uq(s, y) dy ds.
(.)

We say that (u, v) is a mild solution of (.) if (u, v) is a solution of (.). In this paper
solutions will be understood in the mild sense. The existence of local solutions for the
system (.) follows from the Banach fixed point theorem. The proof is standard, so we
omit it.

The paper is organized as follows. In Section , we establish notation and discuss some
preliminary material on the fundamental solution P(t, x) of the fractional heat operator
∂t + (–�)

β
 . In Section , we prove the blow-up property of the positive mild solution to

the problem (.). In Section , we give a discussion of the study of systems of fractional
reaction-diffusion equations.

2 Preliminaries
Here we discuss some elementary properties of the fundamental solution P(t, x) of the
fractional heat operator ∂t + (–�)

β
 .

Lemma . [] Let P(t, x) be the fundamental solution of the fractional heat operator ∂t +
(–�)

β
 in x ∈ RN . Then

P(t, x) =
∫ +∞


ft, β

(s)T(s, x) ds, x ∈ RN , t > ,  < β < , (.)

P(t, x) = T(t, x) = (π t)– N
 e– |x|

t , x ∈ RN , t > ,β = , (.)

where T(t, x) is the fundamental solution of the heat operator ∂t – � in x ∈ RN and

ft, β
(s) =


π i

∫ τ+i∞

τ–i∞
ezs–tz

β
 dz ≥ , s > . (.)

Lemma . [] Let P(t, x) be the fundamental solution of the fractional heat operator
∂t + (–�)

β
 in x ∈ RN . Then we have the following properties:

(a) P(ts, x) = t– N
β P(s, t– 

β x),
(b) P(t, x) ≥ ( s

t )
N
β P(s, x), ∀t ≥ s,

(c) if P(t, ) ≤  and τ ≥ , then P(t, x–y
τ

) ≥ P(t, x)P(t, y),
(d) ‖P(t, ·)‖L = , ∀t > ,

and P(t, ) is decreasing in t and P(t, x) is decreasing in |x|.
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Lemma . [] The function ft, β
(s) has the following properties.

()
∫ +∞

 e–λaft, β
(λ) dλ = e–ta

β
 , t > , a > ,

()
∫ +∞

 ft, β
(λ) dλ = ,

() ft+s, β
(λ) =

∫ +∞
 ft, β

(λ – μ)fs, β
(μ) dμ,

()
∫ +∞


∂
∂t ft, β

(λ) dλ = , ∀t > .

Lemma . [] The function P(t, x) is C∞ in x for t >  and there exists a positive constant
C such that P(, x) behaves like 

+|x|N+β , which by scaling implies

() C–(t– N
β ∧ t

|x|N+β ) ≤ P(t, x) ≤ C(t– N
β ∧ t

|x|N+β ),
() P(t, x) ≈ t

t
N+β

β +|x|N+β

.

Lemma . Let T(t, x) be the fundamental solution of the heat operator ∂t – � in x ∈ RN .
Then we have the formula

∫

RN
T(τ , x – y)T(μ, y) dy = T(τ + μ, x), ∀τ > ,μ > , x ∈ RN . (.)

Proof From (.), we have

T(τ , x – y)T(μ, y)

= (πτ )– N
 (πμ)– N

 e– |x–y|
τ – |y|

μ

= (πτ )– N
 (πμ)– N

 e– τ+μ
τμ |y– μx

τ+μ |– |x|
(τ+μ) ,

then we have
∫

RN
T(τ , x – y)T(μ, y) dy

= (πτ )– N
 (πμ)– N

 e– |x|
(τ+μ)

∫

RN
e– τ+μ

τμ |y– μx
τ+μ | dy

= (πτ )– N
 (πμ)– N

 e– |x|
(τ+μ)

∫

RN
e– τ+μ

τμ |z| dz

= (πτ )– N
 (πμ)– N

 e– |x|
(τ+μ)

(

π
τμ

τ + μ

) N


= (π )– N
 (τ + μ)– N

 e– |x|
(τ+μ)

= T(τ + μ, x).

The proof is complete. �

The following important property is an immediate consequence of the above result.

Lemma . Let P(t, x) be the fundamental solution of the fractional heat operator ∂t +
(–�)

β
 in x ∈ RN . Then we have
∫

RN
P(t – s, x – y)P(s, y) dy = P(t, x), ∀t > , s > , x ∈ RN . (.)
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Proof From (.) and (.), we have

∫

RN
P(t – s, x – y)P(s, y) dy

=
∫

RN

∫ +∞


ft–s, β

(τ )T(τ , x – y) dτ

∫ +∞


fs, β

(μ)T(μ, y) dμdy

=
∫ +∞


dτ

∫ +∞


dμ

∫

RN
ft–s, β

(τ )T(τ , x – y)fs, β
(μ)T(μ, y) dy.

Lemma . implies that

∫

RN
P(t – s, x – y)P(s, y) dy =

∫ +∞



∫ +∞


ft–s, β

(τ )fs, β
(μ)T(μ + τ , x) dτ dμ.

Make a transformation in the region [, +∞) × [, +∞): m = τ , n = τ + μ, the determinant
of the Jacobian is | ∂(m,n)

∂(τ ,μ) | = ; then we have

∫

RN
P(t – s, x – y)P(s, y) dy =

∫ +∞


dn

∫ +∞


ft–s, β

(m)fs, β
(n – m)T(n, x) dm

=
∫ +∞



(∫ +∞


ft–s, β

(m)fs, β
(n – m) dm

)

T(n, x) dn,

using the third property in Lemma ., we have

∫

RN
P(t – s, x – y)P(s, y) dy =

∫ +∞


ft, β

(n)T(n, x) dn = P(t, x).

The proof is complete. �

3 Blow-up property of positive mild solutions
In this section, we will study the blow-up property of positive mild solutions to the Cauchy
problem (.). Let (u(t, x), v(t, x)) be a positive mild solution of (.). We first prove that the
functions

u(t) =
∫

RN
P(t, x)u(t, x) dx, v(t) =

∫

RN
P(t, x)v(t, x) dx (.)

blow up in a finite time, then we find that the solution (u(t, x), v(t, x)) blows up in a finite
time.

We first need some preliminary results.

Lemma . Let (u(t, x), v(t, x)) be a positive mild solution of (.) and p, q > . Then
(u(t, x), v(t, x)) blows up in a finite time if and only if (u(t), v(t)) blows up in a finite time,
that is, there is a constant T∗ >  such that u(t) = +∞, v(t) = +∞ for all t ≥ T∗.

Remark . Lemma . tells us that for (u(t), v(t)) to blow up in a finite time T∗ implies
that (u(t, x), v(t, x)) blows up in a finite time T∗ > ; in general, we have T∗ ≤ T∗. We refer
the readers to the paper of Ball [].
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Proof Necessity is obvious. We just prove the sufficiency.
Since u(t) = +∞, v(t) = +∞ for all t ≥ T∗, we assume that P(T∗, ) ≤ . The monotonicity

of P(t, ) in Lemma . implies that P(t, ) ≤ P(T∗, ) ≤ , ∀t ≥ T∗.
Let T∗ ≤ t ≤ s ≤ t

β + and τ = ( t–s
s )


β . Following the proof of Lemma . in [] we have

P(t – s, x – y) ≥
(

s
t – s

) N
β

P(s, x)P(s, y),

then
∫

RN
P(t – s, x – y)v(s, y) dy

≥
(

s
t – s

) N
β

P(s, x)
∫

RN
P(s, y)v(s, y) dy

=
(

s
t – s

) N
β

P(s, x)v(s),

since T∗ ≤ t ≤ s ≤ t
β + and v(s) = +∞, we have

∫

RN
P(t – s, x – y)v(s, y) dy = +∞. (.)

On the other hand, by the Duhamel formula from the first equation in (.), we have

u(t, x) =
∫

RN
P(t, x – y)u(y) dy

+
∫ t



∫

RN
P(t – s, x – y)vp(s, y) dy ds.

For p > , and u(y) ≥ , v(s, y) ≥ , we apply Jensen’s inequality to obtain

u(t, x) ≥
∫ t



∫

RN
P(t – s, x – y)vp(s, y) dy

≥
∫ t

β +



(∫

RN
P(t – s, x – y)v(s, y) dy

)p

ds

= +∞,

the last equality comes from (.), so that u(t, x) = +∞ for all t ≥ T∗ and x ∈ RN . Similarly,
we can prove that v(t, x) = +∞ for all t ≥ T∗ and x ∈ RN . The proof is complete. �

Following the proof of Lemma . in [], we can get the following result for the coupled
system (.), a similar result to the case of a scalar equation.

Lemma . Let (u(t, x), v(t, x)) be a positive mild solution of (.). There exist positive con-
stants t, c such that for δ = t

β

{
u(t, x) ≥ cP(δ, x), x ∈ RN ,
v(t, x) ≥ cP(δ, x), x ∈ RN .

(.)
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Lemma . Let (u(t, x), v(t, x)) be a positive mild solution of (.), t, c be positive constants
and l, l be constants. Assume that for all x ∈ RN , t ≥ t

{
u(t, x) ≥ ctl P(t, x), x ∈ RN ,
v(t, x) ≥ ctl P(t, x), x ∈ RN .

(.)

() There exist positive constants t ≥ t, c such that for x ∈ RN , t ≥ t

{
u(t, x) ≥ ct+lpPp(t, x),  + lp �= ,
v(t, x) ≥ ct+lqPq(t, x),  + lq �= .

(.)

() There exist positive constants t ≥ t
 , c such that for x ∈ RN , t ≥ t

{
u(t, x) ≥ c ln tPp(t, x),  + lp = ,
v(t, x) ≥ c ln tPq(t, x),  + lq = .

(.)

Proof By the Duhamel formula of the second equation in (.), we have

v(t, x) =
∫

RN
P(t – t, x – y)u(t, y) dy

+
∫ t

t

∫

RN
P(t – s, x – y)uq(s, y) dy ds

≥
∫ t

t

∫

RN
P(t – s, x – y)uq(s, y) dy ds.

Thanks to Jensen’s inequality, (.) implies that

v(t, x) ≥
∫ t

t

(∫

RN
P(t – s, x – y)u(s, y) dy

)q

ds

≥ cq


∫ t

t

slq
(∫

RN
P(t – s, x – y)P(s, y) dy

)q

ds,

by the property of P(t, x) in Lemma ., (.) implies that

v(t, x) ≥ cq


∫ t

t

slqPq(t, x) ds

= cq
Pq(t, x)

∫ t

t

slq ds

=
cq


 + lq

Pq(t, x)
[
t+lq – t+lq


]
.

Three cases arise.
Case . If  + lq > , there exists a constant t ≥ t such that for all t ≥ t we have t ≤ t


and

t+lq
 ≤

(
t


)+lq

=
t+lq

+lq ,
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then we have

v(t, x) ≥ cq


 + lq

(

 –


+lq

)

t+lqPq(t, x) for all x ∈ RN , t ≥ t.

Denote the constant c = cq


+lq ( – 
+lq ) > , we get

v(t, x) ≥ ct+lqPq(t, x) for all x ∈ RN , t ≥ t.

Case . If  + lq < , there exists a constant t ≥ t such that for all t ≥ t we have t ≤ t


and

v(t, x) ≥ cq


–( + lq)
(
–(+lq) – 

)
t+lqPq(t, x) for all x ∈ RN , t ≥ t.

Denote the constant c = cq


–(+lq) (–(+lq) – ) > , we get

v(t, x) ≥ ct+lqPq(t, x) for all x ∈ RN , t ≥ t.

Case . If + lq = , there exists a constant t ≥ t
 such that for all t ≥ t we have t ≤ √

t,
that is, ln t ≤ 

 ln t, then

v(t, x) ≥ cq
Pq(t, x)(ln t – ln t)

≥ cq



Pq(t, x) ln t for all x ∈ RN , t ≥ t.

Denote the constant c = cq

 > , we get

v(t, x) ≥ c ln tPq(t, x) for all x ∈ RN , t ≥ t.

According to the above three cases, we get for all x ∈ RN , t ≥ t

{
v(t, x) ≥ ct+lqPq(t, x),  + lq �= ,
u(t, x) ≥ c ln tPq(t, x),  + lq = .

Similarly, we can prove that for x ∈ RN , t ≥ t

{
u(t, x) ≥ ct+lpPp(t, x),  + lp �= ,
u(t, x) ≥ c ln tPp(t, x),  + lp = .

This concludes the proof. �

Theorem . Let (u(t, x), v(t, x)) be a positive mild solution of (.). Assume p > , q > ,
and pq <  + β

N ( + min{p, q}), then

lim
t→+∞ u(t, x) = +∞, lim

t→+∞ v(t, x) = +∞. (.)
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Proof Without loss of generality, we assume that u(x) �≡  and v(x) �≡ . Otherwise, we
can translate the time axis and choose a suitable time as the initial time. On the other hand,
we will prove the result only for  + lq �=  and  + lp �= . For  + lq =  or  + lp = , the
proof is very similar.

By Lemma . and the Duhamel formula we get

u(t + t, x) ≥
∫

RN
P(t, x – y)u(t, y) dy

≥ c
∫

RN
P(t, x – y)P(δ, y) dy

= cP(t + δ, x), ∀x ∈ RN , t ≥ ,

then

u(t, x) ≥ cP(t – t + δ, x), ∀x ∈ RN , t ≥ t,

due to the property in Lemma ., ∀x ∈ RN , t ≥ t,

u(t, x) ≥ c
(

t
t – t + δ

) N
β

P(t, x)

≥ ct
N
β

 t– N
β P(t, x)

= ct– N
β P(t, x),

that is,

u(t, x) ≥ ct– N
β P(t, x), ∀x ∈ RN , t ≥ t. (.)

Similarly, we have

v(t, x) ≥ ct– N
β P(t, x), ∀x ∈ RN , t ≥ t. (.)

From (.), (.), and Lemma ., there exist constants c, t such that

u(t, x) ≥ ct– N
β

pPp(t, x), ∀x ∈ RN , t ≥ t, (.)

v(t, x) ≥ ct– N
β

qPq(t, x), ∀x ∈ RN , t ≥ t. (.)

We claim that for any positive integer k there exist constants ck , tk such that for an even
number k

u(t, x) ≥ ckt(+p) (pq)
k
 –

pq– – N
β

(pq)
k
 P(pq)

k
 (t, x), ∀x ∈ RN , t ≥ tk , (.)

v(t, x) ≥ ckt(+q) (pq)
k
 –

pq– – N
β

(pq)
k
 P(pq)

k
 (t, x), ∀x ∈ RN , t ≥ tk , (.)
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and for an odd number k:

u(t, x) ≥ ckt(+p) (pq)
k–

 –
pq– +(pq)

k–
 (– N

β
p)P(pq)

k–
 p(t, x), ∀x ∈ RN , t ≥ tk , (.)

v(t, x) ≥ ckt(+q) (pq)
k–

 –
pq– +(pq)

k–
 (– N

β
q)P(pq)

k–
 q(t, x), ∀x ∈ RN , t ≥ tk . (.)

Equations (.) and (.) imply that (.) and (.) hold for k = . We assume that
(.) and (.) hold for k = r – :

u(t, x) ≥ cr–t(+p) (pq)r––
pq– +(pq)r–(– N

β
p)P(pq)r–p(t, x), ∀x ∈ RN , t ≥ tk , (.)

v(t, x) ≥ cr–t(+q) (pq)r––
pq– +(pq)r–(– N

β
q)P(pq)r–q(t, x), ∀x ∈ RN , t ≥ tk ; (.)

then for k = r, from (.), (.), and Lemma ., there exist constants cr , tr such that

u(t, x) ≥ crt+p(+q) (pq)r––
pq– +p(pq)r–(– N

β
q)P(pq)r

(t, x)

≥ crt(+p) (pq)r–
pq– –(pq)r N

β P(pq)r
(t, x). (.)

Similarly we can get

v(t, x) ≥ crt+q(+p) (pq)r––
pq– +q(pq)r–(– N

β
p)P(pq)r

(t, x)

≥ crt(+q) (pq)r–
pq– –(pq)r N

β P(pq)r
(t, x). (.)

It is easy to check that (.) and (.) hold for k = . We assume that (.) and (.)
hold for k = r, similarly we can check that (.) and (.) hold for k = r + .

Now for an even number k, using Lemma . we have

u(t, x) ≥ ckt(+p) (pq)
k
 –

pq– – N
β

(pq)
k

(

t

t
N+β

β + |x|N+β

)(pq)
k


. (.)

Fix x ∈ RN , for large enough t, we get

u(t, x) ≥ ct(+p) (pq)
k
 –

pq– – N
β

(pq)
k

(

t– N
β

 + t– N+β
β |x|N+β

)(pq)
k


≥ ct(+p) (pq)
k
 –

pq– – N
β

(pq)
k
 = ctA, (.)

where the power of t is

A = ( + p)
(pq) k

 – 
pq – 

–
N
β

(pq)
k


=


pq – 

{

(pq)
k


[

 + p –
N
β

(pq – )
]

– ( + p)
}

. (.)
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The conditions p > , q > , and pq <  + β

N ( + min{p, q}) imply that  + p – N
β

(pq – ) > ,
then A → +∞ as k → +∞.

Therefore, we have

lim
t→+∞ u(x, t) = +∞

uniformly in x ∈ RN .
Similarly we can get

lim
t→+∞ v(x, t) = +∞

uniformly in x ∈ RN .
Finally, for an odd number k, (.) implies that

u(t, x) ≥ ct(+p) (pq)
k–

 –
pq– +(pq)

k–
 (– N

β
p)
(

t– N
β

 + t– N+β
β |x|N+β

)(pq)
k–

 p

. (.)

Fix x ∈ RN , for large enough t, we get

u(t, x) ≥ ct(+p) (pq)
k–

 –
pq– +(pq)

k–
 (– N

β
p) = ctB, (.)

where the exponent is

B = ( + p)
(pq) k–

 – 
pq – 

+ (pq)
k–



(

 –
N
β

p
)

=


pq – 

{

(pq)
k–

 p
[

 + q –
N
β

(pq – )
]

– ( + q)
}

. (.)

The conditions p > , q > , and pq <  + β

N ( + min{p, q}) imply that  + q – N
β

(pq – ) > ,
then B → +∞ as k → +∞.

Therefore, we have

lim
t→+∞ u(x, t) = +∞

uniformly in x ∈ RN for an odd number k.
Similarly we can prove that

lim
t→+∞ v(x, t) = +∞

uniformly in x ∈ RN for an odd number k.
The proof of the theorem is complete. �

Theorem . Let (u(t, x), v(t, x)) be a positive mild solution of (.). Assume p > , q > , and
pq <  + β

N ( + min{p, q}), then (u(t, x), v(t, x)) blows up in a finite time T > ; u(t, x) = +∞,
v(t, x) = +∞ for all t ≥ T and x ∈ RN .
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Proof By the Duhamel formula from the first equation in (.), we have

u(t + t, x) =
∫

RN
P(t, x – y)u(t, y) dy

+
∫ t+t

t

∫

RN
P(t + t – s, x – y)vp(s, y) dy ds,

using the definition of u(t) in (.) we have

u(t + t) =
∫

RN

∫

RN
P(t + t, x)P(t, x – y) dxu(t, y) dy

+
∫ t+t

t

∫

RN

∫

RN
P(t + t, x)P(t + t – s, x – y) dxvp(s, y) dy ds,

by Lemma . and Lemma .,

u(t + t) =
∫

RN
P(t + t, y)u(t, y) dy

+
∫ t+t

t

∫

RN
P(t + t – s, y)vp(s, y) dy ds

≥ c
∫

RN
P(t + t, y)P(δ, y) dy

+
∫ t



∫

RN
P(t + t – s, y)vp(s + t, y) dy ds.

Due to Lemma ., Lemma ., and Jensen’s inequality, we get

u(t + t) ≥ cP(, )(t + t + δ)– N
β

+
∫ t



(
s + t

t + t – s

) N
β

vp(s + t) ds, ∀t ≥ ,

then, for t ≥ t,

u(t) ≥ cP(, )(t – t + δ)– N
β + (t)– N

β

∫ t

t

s
N
β vp(s) ds,

that is,

t
N
β u(t) ≥ cP(, )

(
t

t – t + δ

) N
β

+ – N
β

∫ t

t

s
N
β vp(s) ds,

hence, for t ≥ t, we have

t
N
β u(t) ≥ c– N

β P(, ) + – N
β

∫ t

t

s
N
β vp(s) ds. (.)

Similarly for t ≥ t, we also have

t
N
β v(t) ≥ c– N

β P(, ) + – N
β

∫ t

t

s
N
β uq(s) ds. (.)
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From p > , q > , we know that r = min{p, q} > . Theorem . implies that u(t, x) > ,
v(t, x) >  for large enough t. We add (.) and (.):

t
N
β
[
u(t) + v(t)

]

≥ c– N
β P(, ) + – N

β

∫ t

t

s
N
β
[
vp(s) + uq(s)

]
ds

≥ c– N
β P(, ) + – N

β

∫ t

t

s
N
β
[
vr(s) + ur(s)

]
ds

≥ c– N
β P(, ) + – N

β

∫ t

t

s
N
β –r[v(s) + u(s)

]r ds

= c + c

∫ t

t

s
N(–r)

β –r[s
N
β v(s) + s

N
β u(s)

]r ds, (.)

where c, c are positive constants.
Set

f (t) = t
N
β
[
u(t) + v(t)

]
, t ≥ t. (.)

Equation (.) becomes

f (t) ≥ c + c

∫ t

t

s
N(–r)

β –rf r(s) ds. (.)

Denote

g(t) = c + c

∫ t

t

s
N(–r)

β –rgr(s) ds. (.)

Then g(t) is a solution of the initial value problem

{

g ′(t) = ct
N(–r)

β gr(t),
g(t) = c.

(.)

Its solution is

g(t) =


[c–r
 + c(r–)

– N
β

(r–)
t

– N
β

(r–)
 – c(r–)

– N
β

(r–)
t– N

β
(r–)]r–

. (.)

Set

T =
[c–r

 ( – N
β

(r – ))
c(r – )

+ t
– N

β
(r–)



] 
– N

β
(r–)

. (.)

If q ≥ p >  and pq <  + β

N ( + min{p, q}), then r = p >  and

r =
pq
q

<

q

+
β

N
 + min{p, q}

q
<  +

β

N
,

that is,  – N
β

(r – ) > , then T < +∞.
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If p ≥ q >  and pq <  + β

N ( + min{p, q}), then r = q >  and

r =
pq
p

<

p

+
β

N
 + min{p, q}

p
<  +

β

N
,

that is,  – N
β

(r – ) > , then T < +∞.
Therefore, the conditions p > , q > , and pq <  + β

N ( + min{p, q}) imply that T < +∞
and

lim
t↑T

g(t) = lim
t↑T

[  – N
β

(r – )

c(r – )(T
– N

β
(r–)

 – t– N
β

(r–))

]r–

= +∞. (.)

The comparison principle implies that f (t) ≥ g(t), so we have

lim
t↑T

f (t) = +∞. (.)

From (.), we get

lim
t↑T

u(t) = +∞, lim
t↑T

v(t) = +∞. (.)

Therefore, Lemma . implies that (u(t, x), v(t, x)) blows up in a finite time T > ; u(t, x) =
+∞, v(t, x) = +∞ for t ≥ T and x ∈ RN .

This will conclude the proof of Theorem .. �

4 Discussion
In this paper, we investigated the blow-up property of the positive mild solutions to a
system of fractional reaction-diffusion equations,

⎧
⎪⎨

⎪⎩

ut + (–�)
β
 u = vp, x ∈ RN , t > ,

vt + (–�)
β
 v = uq, x ∈ RN , t > ,

u(, x) = u(x) ≥ , v(, x) = v(x) ≥ , x ∈ RN ,
(.)

where p, q are positive constants, and the fractional power of the Laplacian operator
(–�)

β
 for  < β ≤  is a nonlocal operator. The asymptotic behavior of solutions to the

system (.) was studied much less. The main difficulty is the complicated expression of
the fundamental solution P(t, x) of the fractional heat operator ∂t +(–�)

β
 . Using the prop-

erties of the fundamental solution P(t, x) and some estimates of P(x, t) developed by Yosida
[], Caffarelli and Figalli [], and Guedda and Kirane [], we give a sufficient condition
that the positive mild solution of the fractional reaction-diffusion system blows up in finite
time.

Maybe one can use the method described in this paper to consider the blow-up solutions
to the following Cauchy problem of a fractional reaction-diffusion system:

⎧
⎪⎨

⎪⎩

ut + g(t)(–�) α
 u = h(t)|x|mvp, x ∈ RN , t > ,

vt + g(t)(–�)
β
 v = h(t)|x|nuq, x ∈ RN , t > ,

u(, x) = u(x) ≥ , v(, x) = v(x) ≥ , x ∈ RN ,
(.)
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where  < α,β ≤ , gi(t), hi(t) ∈ C(, +∞) (i = , ) are nonnegative functions and hi(t)
(i = , ) satisfy

citσi ≤ hi(t) ≤ citσi

for large enough t, ci > , ci > , σi > – (i = , ) are constants.
For more details on the model (.) one can refer to Pérez [–] and Villa [].
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