24 research outputs found

    Chitosan nanogels for biomedical applications: choosing a suitable sterilization method

    Get PDF
    Poster presented at the 10th World Biomaterials Congress. Montreal, Canada, 17-22 May 2016N/

    Efeitos de snack de amaranto desengordurado (Amaranthus caudatus L.) no metabolismo lipídico de pacientes com hipercolesterolemia moderada

    Get PDF
    We evaluated the effects of defatted amaranth (Amaranthus caudatus L.) snacks on plasma lipids in moderate hypercholesterolemic patients. Twenty-two subjects [30-65 years old), 11 males, with total cholesterol (TC) &gt; 240 mg.dL-1, low-density cholesterol (LDL-c) 160-190 mg.dL-1 and plasma triglycerides (TG) < 400 mg.dL-1] were randomized in a double blind clinical trial to receive an amaranth snack (50 g/day) or equivalent corn snack (placebo) for 2 months. There were no differences between amaranth and placebo on TC and LDL-c, and TG respectively: -8.4 and -5.7% (p = 0.17); -12.3 and -9.7% (p = 0.41) and -0.6 and -7.3% (p = 0.47). However, amaranth snacks significantly reduced high-density cholesterol (HDL-c): -15.2 vs. -4% (p = 0.03). In conclusion, the intake of 50 g of extruded amaranth daily during 60 days did not significantly reduce LDL-c in moderate hypercholesterolemic subjects; furthermore there was a significant reduction in HDL-c. Studies with greater number of subjects and greater quantity of this food are necessary to test the effects of amaranth on lipid metabolism in humans.Avaliamos os efeitos de snacks feitos com amaranto desengordurado (Amaranthus caudatus L.) no metabolismo lipídico de pacientes com hipercolesterolemia moderada. O ensaio clínico contou com vinte e dois voluntários [30-65 anos, 11 homens, com colesterol total &gt; 240 mg.dL-1, LDL-c 160-190 mg.mL-1, e triglicerídeos plasmáticos (TG) < 400 mg.mL-1] aleatoriamente distribuídos em dois grupos que receberam um snack de amaranto (50 g/dia) ou um placebo equivalente (snack de milho) por dois meses. Não houve diferenças significativas entre o amaranto e o placebo no colesterol total, LDL-c e TG, cujos valores foram, respectivamente, -8,4 e -5,7% (p = 0,17); -12,3 e -9,7% (p = 0,41) e -0,6 e -7,3% (p = 0,47). Entretanto, o consumo de snacks de amaranto reduziu significativamente o HDL-c: -15,2 vs. -4% (p = 0,03). Concluímos que o consumo de 50 g de amaranto extrusado por 60 dias não foi suficiente para reduzir significativamente LDL-c em pacientes com hipercolesterolemia moderada; além disso, observou-se significativa redução de HDL-c. Estudos com maior número de participantes e maior quantidade de amaranto são necessários para se testarem os seus efeitos no metabolismo humano.FAPESPInCorCNP

    Phenotypical, Clinical, and Molecular Aspects of Adults and Children With Homozygous Familial Hypercholesterolemia in Iberoamerica

    Get PDF
    Fil: Alves, Ana Catarina. Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa; Portugal.Fil: Alonso, Rodrigo. Center for Advanced Metabolic Medicine and Nutrition, Santiago; Chile.Fil: Diaz-Diaz, José Luís. Hospital Universitario A Coruña. Department of Internal Medicine; España.Fil: Medeiros, Ana Margarida. Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa; Portugal.Fil: Jannes, Cinthia E. University of São Paulo. Medical School. Hospital São Paulo. Heart Institute (InCor); Brasil.Fil: Merchan, Alonso. Fundación Clinica SHAIO, Cardiología, Bogotá; Colombia.Fil: Vasques-Cardenas, Norma A. Universidad Autónoma de Guadalajara. Facultad de Medicina Zapopan; México.Fil: Cuevas, Ada. Center for Advanced Metabolic Medicine and Nutrition, Santiago; Chile.Fil: Chacra, Ana Paula. University of São Paulo. Medical School. Hospital São Paulo. Heart Institute (InCor); Brasil.Fil: Krieger, Jose E. University of São Paulo. Medical School. Hospital São Paulo. Heart Institute (InCor); Brasil.Fil: Arroyo, Raquel. Fundación Hipercolesterolemia Familiar, Madrid; España.Fil: Arrieta, Francisco. Hospital Ramón y Cajal. Departamento de Endocrinología, Madrid; España.Fil: Schreier, Laura. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Bioquímica Clínica, Laboratorio de Lípidos y Aterosclerosis; Argentina.Fil: Corral, Pablo. Universidad FASTA. Facultad de Medicina. Cátedra Farmacología e Investigación, Mar del Plata; Argentina.Fil: Bañares, Virginia. ANLIS Dr.C.G.Malbrán. Centro Nacional de Genética Médica. Departamento de Genética Experimental; Argentina.Fil: Araujo, Maria B. Hospital Garrahan. Servicio de Nutrición; Argentina.Fil: Bustos, Paula. Universidad de Concepción. Facultad de Farmacia; Chile.Fil: Asenjo, Sylvia. Universidad de Concepción. Facultad de Medicina; Chile.Fil: Stoll, Mario. Programa GENYCO, Laboratorio de Genética Molecular. Comisión Honoraria de Salud Cardiovascular, Montevideo; Uruguay.Fil: Dell'Oca, Nicolás. Programa GENYCO, Laboratorio de Genética Molecular. Comisión Honoraria de Salud Cardiovascular, Montevideo; Uruguay.Fil: Reyes, Maria. Fundación Cardiovascular de Colombia. Cardiología; Bogotá.Fil: Ressia, Andrés. Fundación Cardiovascular de Colombia. Cardiología; Bogotá.Fil: Campo, Rafael. Instituto Mexicano del Seguro Social. Centro de Investigación Biomédica del Occidente, Guadalajara; México.Fil: Magaña-Torres, Maria T. Instituto Nacional de Ciencias Médicas y Nutrición. Unidad de Investigación de Enfermedades Metabólicas; México.Fil: Metha, Roopa. Instituto Nacional de Ciencias Médicas y Nutrición. Unidad de Investigación de Enfermedades Metabólicas; México.Fil: Aguilar-Salinas, Carlos A. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Departamento de Endocrinología y Metabolismo. Secretaría de la Defensa Nacional. Unidad de Especialidades Médicas. Servicio de Endocrinología; México.Fil: Ceballos-Macias, José J. Pontificia Universidad Javerina. Facultad de Medicina. Departamento de Medicina Interna, Bogotá; Colombia.Fil: Ruiz Morales, Álvaro J. Pontificia Universidad Javerina. Facultad de Medicina. Departamento de Medicina Interna, Bogotá; Colombia.Fil: Mata, Pedro. Fundación Hipercolesterolemia Familiar, Madrid; España.Fil: Bourbon, Mafalda. Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa; Portugal.Fil: Santos, Raul D. University of São Paulo. Medical School. Hospital São Paulo. Heart Institute (InCor); Brasil.OBJECTIVE: Characterize homozygous familial hypercholesterolemia (HoFH) individuals from Iberoamerica. APPROACH AND RESULTS: In a cross-sectional retrospective evaluation 134 individuals with a HoFH phenotype, 71 adults (age 39.3±15.8 years, 38.0% males), and 63 children (age 8.8±4.0 years, 50.8% males) were studied. Genetic characterization was available in 129 (96%). The majority (91%) were true homozygotes (true HoFH, n=79, 43.0% children, 46.8% males) or compound heterozygotes (compound heterozygous familial hypercholesterolemia, n=39, 51.3% children, 46.2% males) with putative pathogenic variants in the LDLR. True HoFH due to LDLR variants had higher total (P=0.015) and LDL (low-density lipoprotein)-cholesterol (P=0.008) compared with compound heterozygous familial hypercholesterolemia. Children with true HoFH (n=34) tended to be diagnosed earlier (P=0.051) and had a greater frequency of xanthomas (P=0.016) than those with compound heterozygous familial hypercholesterolemia (n=20). Previous major cardiovascular events were present in 25 (48%) of 52 children (missing information in 2 cases), and in 43 (67%) of 64 adults with LDLR variants. Children who are true HoFH had higher frequency of major cardiovascular events (P=0.02), coronary heart (P=0.013), and aortic/supra-aortic valve diseases (P=0.022) than compound heterozygous familial hypercholesterolemia. In adults, no differences were observed in major cardiovascular events according to type of LDLR variant. From 118 subjects with LDLR variants, 76 (64%) had 2 likely pathogenic or pathogenic variants. In 89 subjects with 2 LDLR variants, those with at least one null allele were younger (P=0.003) and had a greater frequency of major cardiovascular events (P=0.038) occurring at an earlier age (P=0.001). CONCLUSIONS: There was a high frequency of cardiovascular disease even in children. Phenotype and cardiovascular complications were heterogeneous and associated with the type of molecular defect

    A Curated Review of Recent Literature of Biomarkers Used for Assessing Air Pollution Exposures and Effects in Humans

    No full text
    <div><p>This is a cross-sectional review of biomarkers used in air pollution research from January 2009 through December 2012. After an initial keyword search in PubMed retrieving 426 articles, a comprehensive abstract review identified 54 articles of experimental design that used biomarkers of exposure or effect in human studies in the area of air pollution research during this specified time period. A thorough bibliographic search of the included articles retrieved an additional 65 articles meeting the inclusion criteria. This review presents these 119 studies and the 234 biomarkers employed in these air pollution research investigations. Data presented are 70 biomarkers of exposure with 54% relating to polycyclic aromatic hydrocarbons, 36% volatile organic carbons, and 10% classified as other. Of the 164 biomarkers of effect, 91 and 130 were used in investigating effects of short-term and chronic exposure, respectively. Results of biomarkers used in short-term exposure describe different lag times and pollutant components such as primary and secondary pollutants, and particle number associated with corresponding physiological mechanisms including airway inflammation, neuroinflammation, ocular, metabolic, early endothelial dysfunction, coagulation, atherosclerosis, autonomic nervous system, oxidative stress, and DNA damage. The review presents three different exposure scenarios of chronic, occupational, and extreme exposure scenarios (indoor cooking) with associated biomarker findings presented in three broad categories of (1) immune profile, (2) oxidative stress, and (3) DNA damage. This review offers a representation of the scope of data being explored by air pollution researchers through the use of biomarkers and has deliberately been restricted to this particular subject rather than an extensive or in-depth review. This article provides a contextualization of air pollution studies conducted with biomarkers in human subjects in given areas while also integrating this complex body of information to offer a useful review for investigators in this field of study.</p></div

    SLCO1B1 haplotypes are not associated with atorvastatin-induced myalgia in Brazilian patients with familial hypercholesterolemia

    No full text
    Purpose Recent studies reported the association of SLCO1B1 haplotypes with the development of musculoskeletal side effects during simvastatin use. The aim was to evaluate the pharmacogenetic association of SLCO1B1 haplotypes with atorvastatin-induced myalgia in a sample of individuals on high-dose atorvastatin regimens. Methods One hundred and forty-three patients with familial hypercholesterolemia were followed for at least 12 months while receiving atorvastatin. Genotypes for the rs2306283 (c.A388G) and rs4149056 (c.T521C) polymorphisms were detected by high-resolution melting analysis. These markers form four distinct haplotypes (*1A, *1B, *5 and *15). Results During the follow-up period, 14 (9.8%) patients developed myalgia and 16 (11.2%) presented CK levels more than 3 times the upper limit of the normal range. No association of the SLCO1B1 rs2306283 and rs4149056 genotypes or haplotypes with the presence of myalgia or creatine kinase (CK) values was found. Presence of rs2306283 AG+GG genotypes was not associated with increased risks of myalgia or abnormal CK values (OR 2.08, 95% CI 0.62-7.00, p=0.24 and OR 0.51, 95% CI 0.21-1.26, p=0.15 respectively). The presence of rs4149056 TC+CC genotypes was also not associated with increased risk of myalgia or abnormal CK values (OR 2.24, 95% CI 0.47-10.72, p=0.31 and OR 1.51, 95% CI 0.57-3.96, p=0.41 respectively). Conclusions Our findings reaffirm that the SLCO1B1 genetic risk appears to be greater in those patients receiving simvastatin compared with those receiving atorvastatin. This suggests that the importance of SLCO1B1 haplotypes depends on the specific statin that has been used.FAPESP (Brazil)FAPESP, Brazil [Proc. 2010-17465-8

    Brazilian guidelines on prevention of cardiovascular disease in patients with diabetes : a position statement from the Brazilian Diabetes Society (SBD), the Brazilian Cardiology Society (SBC) and the Brazilian Endocrinology and Metabolism Society (SBEM)

    Get PDF
    Background: Since the first position statement on diabetes and cardiovascular prevention published in 2014 by the Brazilian Diabetes Society, the current view on primary and secondary prevention in diabetes has evolved as a result of new approaches on cardiovascular risk stratification, new cholesterol lowering drugs, and new anti-hyperglycemic drugs. Importantly, a pattern of risk heterogeneity has emerged, showing that not all diabetic patients are at high or very high risk. In fact, most younger patients who have no overt cardiovascular risk factors may be more adequately classified as being at intermediate or even low cardiovascular risk. Thus, there is a need for cardiovascular risk stratification in patients with diabetes. The present panel reviews the best current evidence and proposes a practical riskbased approach on treatment for patients with diabetes. Main body: The Brazilian Diabetes Society, the Brazilian Society of Cardiology, and the Brazilian Endocrinology and Metabolism Society gathered to form an expert panel including 28 cardiologists and endocrinologists to review the best available evidence and to draft up-to-date an evidence-based guideline with practical recommendations for risk stratification and prevention of cardiovascular disease in diabetes. The guideline includes 59 recommendations covering: (1) the impact of new anti-hyperglycemic drugs and new lipid lowering drugs on cardiovascular risk; (2) a guide to statin use, including new definitions of LDL-cholesterol and in non-HDL-cholesterol targets; (3) evaluation of silent myocardial ischemia and subclinical atherosclerosis in patients with diabetes; (4) hypertension treatment; and (5) the use of antiplatelet therapy Conclusions: Diabetes is a heterogeneous disease. Although cardiovascular risk is increased in most patients, those without risk factors or evidence of sub-clinical atherosclerosis are at a lower risk. Optimal management must rely on an approach that will cover both cardiovascular disease prevention in individuals in the highest risk as well as protection from overtreatment in those at lower risk. Thus, cardiovascular prevention strategies should be individualized according to cardiovascular risk while intensification of treatment should focus on those at higher risk
    corecore