43 research outputs found

    Levels of malondialdehyde and magnesium and the activity of catalase and glutathione reductase as markers of oxidative stress in the erythrocytes of patients with Ischemic Heart Disease

    Get PDF
    Показано, що в еритроцитах хворих на ішемічну хворобу серця зростає вміст магнію і малоного диальдегіду. Разом iз цим, в еритроцитах підвищується активність антиоксидантних ферментів: каталази та глутатіонредуктази. Отримані дані свідчать про можливість розвитку компенсаторних процесів, спрямованих на підтримання в еритроцитах хворих прооксидантно-антиоксидантної рівноваги.Показано, что в эритроцитах больных ищемической болезнью сердца возрастает содержание магния и малонового диальдегида . Вместе с этим, в эритроцитах повышается активность антиоксидантных ферментов : каталазы и глутатионредуктазы . Полученные данные свидетельствуют о возможности развития компенсаторных процессов , направленных на поддержание в эритроцитах больных проокидантно-антиоксидантного равновесия

    A novel signalling screen demonstrates that CALR mutations activate essential MAPK signalling and facilitate megakaryocyte differentiation.

    Get PDF
    Most MPN patients lacking JAK2 mutations harbour somatic CALR mutations that are thought to activate cytokine signalling although the mechanism is unclear. To identify kinases important for survival of CALR-mutant cells we developed a novel strategy (KISMET) which utilises the full range of kinase selectivity data available from each inhibitor and thus takes advantage of off-target noise that limits conventional siRNA or inhibitor screens. KISMET successfully identified known essential kinases in haematopoietic and non-haematopoietic cell lines and identified the MAPK pathway as required for growth of the CALR-mutated MARIMO cells. Expression of mutant CALR in murine or human haematopoietic cell lines was accompanied by MPL-dependent activation of MAPK signalling, and MPN patients with CALR mutations showed increased MAPK activity in CD34-cells, platelets and megakaryocytes. Although CALR mutations resulted in protein instability and proteosomal degradation, mutant CALR was able to enhance megakaryopoiesis and pro-platelet production from human CD34+ progenitors. These data link aberrant MAPK activation to the MPN phenotype and identify it as a potential therapeutic target in CALR-mutant positive MPNs.Leukemia accepted article preview online, 14 October 2016. doi:10.1038/leu.2016.280.Work in the Green lab is supported by Leukemia and Lymphoma Research, Cancer Research UK, the NIHR Cambridge Biomedical Research Centre, the Cambridge Experimental Cancer Medicine Centre and the Leukemia & Lymphoma Society of America. WW is supported by the Austrian Science Foundation (J 3578-B21). CGA is supported by Kay Kendall Leukaemia Fund clinical research fellowship. UM is supported by a Cancer Research UK Clinician Scientist Fellowship. Work in the Huntly lab is supported by the European Research Council, the MRC (UK), Bloodwise, the Cambridge NIHR funded BRC, KKLF and a WT/MRC Stem Cell centre grant. Work in the Green and Huntly Labs is supported by core support grants by the Wellcome Trust to the Cambridge Institute for Medical Research (100140/z/12/z) and Wellcome Trust-MRC Cambridge Stem Cell Institute (097922/Z/11/Z)

    International longitudinal registry of patients with atrial fibrillation and treated with rivaroxaban: RIVaroxaban Evaluation in Real life setting (RIVER)

    Get PDF
    Background Real-world data on non-vitamin K oral anticoagulants (NOACs) are essential in determining whether evidence from randomised controlled clinical trials translate into meaningful clinical benefits for patients in everyday practice. RIVER (RIVaroxaban Evaluation in Real life setting) is an ongoing international, prospective registry of patients with newly diagnosed non-valvular atrial fibrillation (NVAF) and at least one investigator-determined risk factor for stroke who received rivaroxaban as an initial treatment for the prevention of thromboembolic stroke. The aim of this paper is to describe the design of the RIVER registry and baseline characteristics of patients with newly diagnosed NVAF who received rivaroxaban as an initial treatment. Methods and results Between January 2014 and June 2017, RIVER investigators recruited 5072 patients at 309 centres in 17 countries. The aim was to enroll consecutive patients at sites where rivaroxaban was already routinely prescribed for stroke prevention. Each patient is being followed up prospectively for a minimum of 2-years. The registry will capture data on the rate and nature of all thromboembolic events (stroke / systemic embolism), bleeding complications, all-cause mortality and other major cardiovascular events as they occur. Data quality is assured through a combination of remote electronic monitoring and onsite monitoring (including source data verification in 10% of cases). Patients were mostly enrolled by cardiologists (n = 3776, 74.6%), by internal medicine specialists 14.2% (n = 718) and by primary care/general practice physicians 8.2% (n = 417). The mean (SD) age of the population was 69.5 (11.0) years, 44.3% were women. Mean (SD) CHADS2 score was 1.9 (1.2) and CHA2DS2-VASc scores was 3.2 (1.6). Almost all patients (98.5%) were prescribed with once daily dose of rivaroxaban, most commonly 20 mg (76.5%) and 15 mg (20.0%) as their initial treatment; 17.9% of patients received concomitant antiplatelet therapy. Most patients enrolled in RIVER met the recommended threshold for AC therapy (86.6% for 2012 ESC Guidelines, and 79.8% of patients according to 2016 ESC Guidelines). Conclusions The RIVER prospective registry will expand our knowledge of how rivaroxaban is prescribed in everyday practice and whether evidence from clinical trials can be translated to the broader cross-section of patients in the real world

    Phenotypic Screening for Inhibitors of a Mutant Thrombopoietin Receptor.

    No full text
    An inhibitor for the thrombopoietin receptor (TpoR) would be more specific for the treatment of myeloproliferative neoplasms (MPNs) due to constitutively active mutant TpoR compared to the current treatment approach of inhibiting Janus kinase 2 (JAK2). We describe a cell-based high-throughput phenotypic screening approach to identify inhibitors for constitutively active mutant TpoR. A stepwise elimination process is used to differentiate generally cytotoxic compounds from compounds that specifically inhibit growth of cells expressing wild-type TpoR and/or mutant TpoR. We have systematically optimized the phenotypic screening assay and documented in this chapter critical parameters for a successful phenotypic screen, such as cell growth and seeding optimization, plate reproducibility and uniformity studies, and an assay robustness analysis with a pilot screen

    Oncogenic CALR mutant C-terminus mediates dual binding to the thrombopoietin receptor triggering complex dimerization and activation

    Get PDF
    In myeloproliferative neoplasms, frameshift mutants of calreticulin turn into rogue cytokines by inducing constitutive activation of the Thrombopoietin Receptor (TpoR). Here, the authors define how mutant calreticulin acquires specificity for TpoR binding and triggers its constitutive activation

    Persistent STAT5 activation in myeloid neoplasms recruits p53 into gene regulation

    No full text
    International audienceSTAT (Signal Transducer and Activator of Transcription) transcription factors are constitutively activated in most hematopoietic cancers. We previously identified a target gene, LPP/miR-28 (LIM domain containing preferred translocation partner in lipoma), induced by constitutive activation of STAT5, but not by transient cytokine-activated STAT5. miR-28 exerts negative effects on thrombopoietin receptor signaling and platelet formation. Here, we demonstrate that, in transformed hematopoietic cells, STAT5 and p53 must be synergistically bound to chromatin for induction of LPP/miR-28 transcription. Genome-wide association studies show that both STAT5 and p53 are co-localized on the chromatin at 463 genomic positions in proximal promoters. Chromatin binding of p53 is dependent on persistent STAT5 activation at these proximal promoters. The transcriptional activity of selected promoters bound by STAT5 and p53 was significantly changed upon STAT5 or p53 inhibition. Abnormal expression of several STAT5-p53 target genes (LEP, ATP5J, GTF2A2, VEGFC, NPY1R and NPY5R) is frequently detected in platelets of myeloproliferative neoplasm (MPN) patients, but not in platelets from healthy controls. In conclusion, persistently active STAT5 can recruit normal p53, like in the case of MPN cells, but also p53 mutants, such as p53 M133K in human erythroleukemia cells, leading to pathologic gene expression that differs from canonical STAT5 or p53 transcriptional programs.Oncogene advance online publication, 31 March 2014; doi:10.1038/onc.2014.60
    corecore