127 research outputs found

    Mapping of the Ronda peridotite massif (Spain) from AVIRIS spectro-imaging survey: A first attempt

    Get PDF
    In both AVIRIS and ISM data, through the use of mixing models, geological boundaries of the Ronda massif are identified with respect to the surrounding rocks. We can also yield first-order vegetation maps. ISM and AVIRIS instruments give consistent results. On the basis of endmember fraction images, it is then possible to discard areas highly vegetated or not belonging to the peridotite massif. Within the remaining part of the mosaic, spectro-mixing analysis reveals spectral variations in the peridotite massif between the well-exposed areas. Spatially organized units are depicted, related to differences in the relative depth of the absorption band at 1 micron, and it may be due to a different pyroxene content. At this stage, it is worth noting that, although mineralogical variations observed in the rocks are at a sub-pixel scale for the airborne analysis, we see an emerging spatial pattern in the distribution of spectral variations across the massif which might be prevailingly related to mineralogy. Although it is known from fieldwork that the Ronda peridotite massif exhibits mineralogical variations at local scale in the content of pyroxene, and at regional scale in different mineral facies, ranging from garnet-, to spinel- to plagioclase-lherzolites, no attempt has been done yet to produce a synoptic map relating the two scales of analysis. The present work is a first attempt to reach this objective, though a lot more work is still required. In particular, for the purpose of mineralogical interpretation, it is critical to relate the airborne observation to field work and laboratory spectra of Ronda rocks already obtained, with the use of image endmembers and associated reference endmembers. Also, the pretty rough linear mixing model used here is taken as a 'black-box' process which does not necessarily apply correctly to the physical situation at the sub-pixel level. One may think of using the ground-truth observations bearing on the sub-pixel statistical characteristics (texture, structural pattern, surface distribution and vegetation contribution (grass,..)) to produce a more advanced mixing model, physically appropriate to the geologic and environmental contexts

    A 3D-CTM with detailed online PSC-microphysics: analysis of the Antarctic winter 2003 by comparison with satellite observations

    Get PDF
    International audienceWe present the first detailed microphysical simulations which are performed online within the framework of a global 3-D chemical transport model (CTM) with full chemistry. The model describes the formation and evolution of four types of polar stratospheric cloud (PSC) particles. Aerosol freezing and other relevant microphysical processes are treated in a full explicit way. Each particle type is described by a binned size distribution for the number density and chemical composition. This set-up allows for an accurate treatment of sedimentation and for detailed calculation of surface area densities and optical properties. Simulations are presented for the Antarctic winter of 2003 and comparisons are made to a diverse set of satellite observations (optical and chemical measurements of POAM III and MIPAS) to illustrate the capabilities of the model. This study shows that a combined resolution approach where microphysical processes are simulated in coarse-grained conditions gives good results for PSC formation and its large-scale effect on the chemical environment through processes such as denitrification, dehydration and ozone loss. It is also shown that the influence of microphysical parameters can be measured directly from these processes

    4D-Var Assimilation of MIPAS chemical observations: ozone and nitrogen dioxide analyses

    Get PDF
    International audienceThis paper discusses the global analyses of stratospheric ozone (O3) and nitrogen dioxide (NO2) obtained by the Belgian Assimilation System for Chemical Observations from Envisat (BASCOE). Based on a chemistry transport model (CTM) and the 4-dimensional variational (4D-Var) method, BASCOE has assimilated chemical observations of O3, NO2, HNO3, N2O, CH4 and H2O, made between July 2002 and March 2004 by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard the European Space Agency (ESA) Environment Satellite (ENVISAT). This corresponds to the entire period during which MIPAS was operating at its nominal resolution. Our analyses are evaluated against assimilated MIPAS data and independent HALOE (HALogen Occultation Experiment) and POAM-III (Polar Ozone and Aerosol Measurement) satellite data. A good agreement is generally found between the analyses and these datasets, in both cases within the estimated error bars of the observations. The benefit of data assimilation is also evaluated using a BASCOE free model run. For O3, the gain from the assimilation is significant during ozone hole conditions, and in the lower stratosphere. Elsewhere, the free model run is within the MIPAS uncertainties and the assimilation does not provide significant improvement. For NO2, the gain from the assimilation is realized through most of the stratosphere. Using the BASCOE analyses, we estimate the differences between MIPAS data and independent data from HALOE and POAM-III, and find results close to those obtained by classical validation methods involving only direct measurement-to-measurement comparisons. Our results extend and reinforce previous MIPAS data validation efforts by taking account of a much larger variety of atmospheric states and measurement conditions. This study discusses possible further developments of the BASCOE data assimilation system; these concern the horizontal resolution, a better filtering of NO2 observations, and the photolysis calculation near the lid of the model. The ozone analyses are publicly available via the PROMOTE project http://www.gse-promote.org)

    A simple framework for modelling the photochemical response to solar spectral irradiance variability in the stratosphere

    Get PDF
    The stratosphere is thought to play a central role in the atmospheric response to solar irradiance variability. Recent observations suggest that the spectral solar irradiance (SSI) variability involves significant time-dependent spectral variations, with variable degrees of correlation between wavelengths, and new reconstructions are being developed. In this paper, we propose a simplified modelling framework to characterise the effect of short term SSI variability on stratospheric ozone. We focus on the pure photochemical effect, for it is the best constrained one. The photochemical effect is characterised using an ensemble simulation approach with multiple linear regression analysis. A photochemical column model is used with interactive photolysis for this purpose. Regression models and their coefficients provide a characterisation of the stratospheric ozone response to SSI variability and will allow future inter-comparisons between different SSI reconstructions. As a first step in this study, and to allow comparison with past studies, we take the representation of SSI variability from the Lean (1997) solar minimum and maximum spectra. First, solar maximum-minimum response is analysed for all chemical families and partitioning ratios, and is compared with past studies. The ozone response peaks at 0.18 ppmv (approximately 3%) at 37 km altitude. Second, ensemble simulations are regressed following two linear models. In the simplest case, an adjusted coefficient of determination <span style="border-top: 1px solid #000; color: #000;">R</span><sup>2</sup> larger than 0.97 is found throughout the stratosphere using two predictors, namely the previous day's ozone perturbation and the current day's solar irradiance perturbation. A better accuracy (<span style="border-top: 1px solid #000; color: #000;">R</span><sup>2</sup> larger than 0.9992) is achieved with an additional predictor, the previous day's solar irradiance perturbation. The regression models also provide simple parameterisations of the ozone perturbation due to SSI variability. Their skills as proxy models are evaluated independently against the photochemistry column model. The bias and RMS error of the best regression model are found smaller than 1% and 15% of the ozone response, respectively. Sensitivities to initial conditions and to magnitude of the SSI variability are also discussed

    Characterization of soil erosion indicators using hyperspectral data from a Mediterranean rainfed cultivated region

    Get PDF
    The determination of surface soil properties is an important application of remotely sensed hyperspectral imagery. Moreover, different soil properties can be associated with erosion processes, with significant implications for land management and agricultural uses. This study integrates hyperspectral data supported by morphological and physico-chemical ground data to identify and map soil properties that can be used to assess soil erosion and accumulation. These properties characterize different soil horizons that emerge at the surface as a consequence of the intensity of the erosion processes, or the result of accumulation conditions. This study includes: 1) field and laboratory characterization of the main soil types in the study area; 2) identification and definition of indicators of soil erosion and accumulation stages (SEAS); 3) compilation of the site-specific MEDiterranean Soil Erosion Stages (MEDSES) spectral library of soil surface characteristics using field spectroscopy; 4) using hyperspectral airborne data to determine a set of endmembers for different SEAS and introducing these into the support vector machine (SVM) classifier to obtain their spatial distribution; and 5) evaluation of the accuracy of the classification applying a field validation protocol. The study region is located within an agricultural region in Central Spain, representative of Mediterranean agricultural uses dominated by a gently sloping relief, and characterized by soils with contrasting horizons. Results show that the proposed method is successful in mapping different SEAS that indicate preservation, partial loss, or complete loss of fertile soils, as well as down-slope accumulation of different soil materials

    Neutral interstellar hydrogen in the inner heliosphere under the influence of wavelength-dependent solar radiation pressure

    Get PDF
    With the plethora of detailed results from heliospheric missions and at the advent of the first mission dedicated IBEX, we have entered the era of precision heliospheric studies. Interpretation of these data require precision modeling, with second-order effects quantitatively taken into account. We study the influence of the non-flat shape of the solar Ly-alpha line on the distribution of neutral interstellar H in the inner heliosphere. Based on available data, we (i) construct a model of evolution for the solar Ly-alpha line profile with solar activity, (ii) modify an existing test-particle code used to calculate the distribution of neutral interstellar H in the inner heliosphere so that it takes the dependence of radiation pressure on radial velocity into account, and (iii) compare the results of the old and new version. Discrepancies between the classical and Doppler models appear between ~5 and ~3 AU and increase towards the Sun from a few percent to a factor of 1.5 at 1 AU. The classical model overestimates the density everywhere except for a ~60-degr cone around the downwind direction, where a density deficit appears. The magnitude of the discrepancies appreciably depends on the phase of the solar cycle, but only weakly on the parameters of the gas at the termination shock. For in situ measurements of neutral atoms performed at ~1 AU, the Doppler correction will need to be taken into account, because the modifications include both the magnitude and direction of the local flux by a few km/s and degrees, respectively, which, when unaccounted for, would introduce an error of a few km/s and degrees in determination of the magnitude and direction of the bulk velocity vector at the termination shock.Comment: 10 pages, 13 figures, accepted by A&

    Variability in precipitation, temperature and river runoff in W Central Asia during the past ~2000yrs

    Get PDF
    The tributary rivers Amu Darya and Syr Darya contribute major amounts of water to the hydrological budget of the endorheic Aral Sea. Processes controlling the flow of water into rivers in the headwater systems in Tien Shan (Kyrgyzstan) and Pamir (Tajikistan) are therefore most relevant. Lake water mineralization is strongly dependent on river discharge and has been inferred from spectrometrically determined gypsum and other salt contents. Comparison of high-resolution mineralization data with tree ring data, other proxies for tracing temperature and snow cover in NW China, and accumulation rates in the Guliya Ice Core indicate that mineralization over the past ~2000. yrs in the Aral Sea reflects snow cover variability and glacier extent in Tien Shan and Pamir (at the NW and W edges of the Tibetan Plateau). Snow cover in W Central Asia is preferentially a winter expression controlled by temperature patterns that impact the moisture-loading capacity over N Europe and NW Asia (Clark et al., 1999). We observed that the runoff, resulting from warmer winter temperatures in W Central Asia and resulting in a reduction of snow cover, decreased between AD 100-300, AD 1150-1250, AD 1380-1450, AD 1580-1680 and during several low frequency events after AD 1800. Furthermore, we observed a negative relationship between the amount of mineralization in the Aral Sea and SW summer monsoon intensity starting with the Little Ice Age. Based on these observations, we conclude that the lake level changes during the past ~. 2000. yrs were mostly climatically controlled. Around AD 200, AD 1400 and during the late 20th century AD, human activities (namely irrigation) may also have synergistically influenced discharge dynamics in the lower river courses. © 2011 Elsevier B.V
    • …
    corecore