578 research outputs found

    Quantitative brain electrical activity in the initial screening of mild traumatic brain injuries

    Get PDF
    Introduction: The incidence of emergency department (ED) visits for Traumatic Brain Injury (TBI) in the United States exceeds 1,000,000 cases/year with the vast majority classified as mild (mTBI). Using existing computed tomography (CT) decision rules for selecting patients to be referred for CT, such as the New Orleans Criteria (NOC), approximately 70% of those scanned are found to have a negative CT. This study investigates the use of quantified brain electrical activity to assess its possible role in the initial screening of ED mTBI patients as compared to NOC.Methods: We studied 119 patients who reported to the ED with mTBI and received a CT. Using a hand-held electroencephalogram (EEG) acquisition device, we collected data from frontal leads to determine the likelihood of a positive CT. The brain electrical activity was processed off-line to generate an index (TBI-Index, biomarker). This index was previously derived using an independent population, and the value found to be sensitive for significant brain dysfunction in TBI patients. We compared this performance of the TBI-Index to the NOC for accuracy in prediction of positive CT findings.Results: Both the brain electrical activity TBI-Index and the NOC had sensitivities, at 94.7% and 92.1% respectively. The specificity of the TBI-Index was more than twice that of NOC, 49.4% and 23.5% respectively. The positive predictive value, negative predictive value and the positive likelihood ratio were better with the TBI-Index. When either the TBI-Index or the NOC are positive (combining both indices) the sensitivity to detect a positive CT increases to 97%.Conclusion: The hand-held EEG device with a limited frontal montage is applicable to the ED environment and its performance was superior to that obtained using the New Orleans criteria. This study suggests a possible role for an index of brain function based on EEG to aid in the acute assessment of mTBI patients. [West J Emerg Med. 2012;13(5):394-400.

    Charge-Transfer Excitations in the Model Superconductor HgBa2_2CuO4+δ_{\bf 4+\delta}

    Full text link
    We report a Cu KK-edge resonant inelastic x-ray scattering (RIXS) study of charge-transfer excitations in the 2-8 eV range in the structurally simple compound HgBa2_2CuO4+δ_{4+\delta} at optimal doping (Tc=96.5T_{\rm c} = 96.5 K). The spectra exhibit a significant dependence on the incident photon energy which we carefully utilize to resolve a multiplet of weakly-dispersive (<0.5 < 0.5 eV) electron-hole excitations, including a mode at 2 eV. The observation of this 2 eV excitation suggests the existence of a charge-transfer pseudogap deep in the superconducting phase. Quite generally, our data demonstrate the importance of exploring the incident photon energy dependence of the RIXS cross section.Comment: 5 pages, 3 figure

    Nuclear break-up of 11Be

    Full text link
    The break-up of 11Be was studied at 41AMeV using a secondary beam of 11Be from the GANIL facility on a 48Ti target by measuring correlations between the 10Be core, the emitted neutrons and gamma rays. The nuclear break-up leading to the emission of a neutron at large angle in the laboratory frame is identified with the towing mode through its characteristic n-fragment correlation. The experimental spectra are compared with a model where the time dependent Schrodinger equation (TDSE) is solved for the neutron initially in the 11 Be. A good agreement is found between experiment and theory for the shapes of neutron experimental energies and angular distributions. The spectroscopic factor of the 2s orbital is tentatively extracted to be 0.46+-0.15. The neutron emission from the 1p and 1d orbitals is also studied

    Fast-neutron induced background in LaBr3:Ce detectors

    Full text link
    The response of a scintillation detector with a cylindrical 1.5-inch LaBr3:Ce crystal to incident neutrons has been measured in the energy range En = 2-12 MeV. Neutrons were produced by proton irradiation of a Li target at Ep = 5-14.6 MeV with pulsed proton beams. Using the time-of-flight information between target and detector, energy spectra of the LaBr3:Ce detector resulting from fast neutron interactions have been obtained at 4 different neutron energies. Neutron-induced gamma rays emitted by the LaBr3:Ce crystal were also measured in a nearby Ge detector at the lowest proton beam energy. In addition, we obtained data for neutron irradiation of a large-volume high-purity Ge detector and of a NE-213 liquid scintillator detector, both serving as monitor detectors in the experiment. Monte-Carlo type simulations for neutron interactions in the liquid scintillator, the Ge and LaBr3:Ce crystals have been performed and compared with measured data. Good agreement being obtained with the data, we present the results of simulations to predict the response of LaBr3:Ce detectors for a range of crystal sizes to neutron irradiation in the energy range En = 0.5-10 MeVComment: 28 pages, 10 figures, 4 Table

    Motoric Cognitive Risk Syndrome: Could It Be Defined Through Increased Five-Times-Sit-to-Stand Test Time, Rather Than Slow Walking Speed?

    Get PDF
    Background: Slow walking speed, time to perform the five-times-sit-to-stand (FTSS) test and motoric cognitive risk syndrome (MCR; defined as slow gait speed combined with subjective cognitive complaint) have been separately used to screen older individuals at risk of cognitive decline. This study seeks to (1) compare the characteristics of older individuals with MCR, as defined through slow walking speed and/or increased FTSS time; and (2) examine the relationship between MCR and its motor components as well as amnestic (a-MCI) and non-amnestic (na-MCI) Mild Cognitive Impairment. Methods: A total of 633, individuals free of dementia, were selected from the cross-sectional "Gait and Alzheimer Interactions Tracking" study. Slow gait speed and increased FTSS time were used as criteria for the definition of MCR. Participants were separated into five groups, according to MCR status: MCR as defined by (1) slow gait speed exclusively (MCRs); (2) increased FTSS time exclusively (MCRf); (3) slow gait speed and increased FTSS time (MCRsaf); (4) MCR; irrespective of the mobility test used (MCRsof); and (5) the absence of MCR. Cognitive status (i.e., a-MCI, na-MCI, cognitively healthy) was also determined. Results: The prevalence of MCRs was higher, when compared to the prevalence of MCRf (12.0% versus 6.2% with P ≤ 0.001). There existed infrequent overlap (2.4%) between individuals exhibiting MCRs and MCRf, and frequent overlap between individuals exhibiting MCRs and na-MCI (up to 50%). a-MCI and na-MCI were negatively [odd ratios (OR) ≤ 0.17 with P ≤ 0.019] and positively (OR ≥ 2.41 with P ≤ 0.019) related to MCRs, respectively. Conclusion: Individuals with MCRf are distinct from those with MCRs. MCRf status does not relate to MCI status in the same way that MCRs does. MCRs is related negatively to a-MCI and positively to na-MCI. These results suggest that FTTS cannot be used to define MCR when the goal is to predict the risk of cognitive decline, such as future dementia

    Age effect on the prediction of risk of prolonged length hospital stay in older patients visiting the emergency department: results from a large prospective geriatric cohort study.

    Get PDF
    With the rapid growth of elderly patients visiting the Emergency Department (ED), it is expected that there will be even more hospitalisations following ED visits in the future. The aim of this study was to examine the age effect on the performance criteria of the 10-item brief geriatric assessment (BGA) for the prolonged length of hospital stay (LHS) using artificial neural networks (ANNs) analysis. Based on an observational prospective cohort study, 1117 older patients (i.e., aged ≥ 65 years) ED users were admitted to acute care wards in a University Hospital (France) were recruited. The 10-items of BGA were recorded during the ED visit and prior to discharge to acute care wards. The top third of LHS (i.e., ≥ 13 days) defined the prolonged LHS. Analysis was successively performed on participants categorized in 4 age groups: aged ≥ 70, ≥ 75, ≥ 80 and ≥ 85 years. Performance criteria of 10-item BGA for the prolonged LHS were sensitivity, specificity, positive predictive value [PPV], negative predictive value [NPV], likelihood ratios [LR], area under receiver operating characteristic curve [AUROC]). The ANNs analysis method was conducted using the modified multilayer perceptron (MLP). Values of criteria performance were high (sensitivity&gt; 89%, specificity≥ 96%, PPV &gt; 87%, NPV &gt; 96%, LR+ &gt; 22; LR- ≤ 0.1 and AUROC&gt; 93), regardless of the age group. Age effect on the performance criteria of the 10-item BGA for the prediction of prolonged LHS using MLP was minimal with a good balance between criteria, suggesting that this tool may be used as a screening as well as a predictive tool for prolonged LHS

    Heavy ion irradiation of crystalline water ice

    Full text link
    Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic stopping power. The final state of cosmic ray irradiation for porous amorphous and crystalline ice, as monitored by infrared spectroscopy, is the same, but with a large difference in cross-section, hence in time scale in an astrophysical context. The cosmic ray water-ice sputtering rates compete with the UV photodesorption yields reported in the literature. The prevalence of direct cosmic ray sputtering over cosmic-ray induced photons photodesorption may be particularly true for ices strongly bonded to the ice mantles surfaces, such as hydrogen-bonded ice structures or more generally the so-called polar ices.Comment: 22pages, 11 figures, accepted in A&

    Atherosclerosis, an inflammatory disease.

    Full text link
    editorial reviewedChronic inflammation is recognized as a contributing factor to the development, progression and complications of atherosclerosis. The inflammatory nature of atherosclerosis has been proven by the presence of inflammatory cells, cytokines and chemokines at all stages of the disease. There is a widely accepted association between cardiovascular events and serum inflammatory markers, such as CRP, IL-6 and IL-1? produced via the inflammasome pathway. The involvement of inflammatory processes in atherosclerosis and progress in the therapeutic strategy are detailed in the article
    corecore