1,326 research outputs found
Using LDGM Codes and Sparse Syndromes to Achieve Digital Signatures
In this paper, we address the problem of achieving efficient code-based
digital signatures with small public keys. The solution we propose exploits
sparse syndromes and randomly designed low-density generator matrix codes.
Based on our evaluations, the proposed scheme is able to outperform existing
solutions, permitting to achieve considerable security levels with very small
public keys.Comment: 16 pages. The final publication is available at springerlink.co
Weighted complex projective 2-designs from bases: optimal state determination by orthogonal measurements
We introduce the problem of constructing weighted complex projective
2-designs from the union of a family of orthonormal bases. If the weight
remains constant across elements of the same basis, then such designs can be
interpreted as generalizations of complete sets of mutually unbiased bases,
being equivalent whenever the design is composed of d+1 bases in dimension d.
We show that, for the purpose of quantum state determination, these designs
specify an optimal collection of orthogonal measurements. Using highly
nonlinear functions on abelian groups, we construct explicit examples from d+2
orthonormal bases whenever d+1 is a prime power, covering dimensions d=6, 10,
and 12, for example, where no complete sets of mutually unbiased bases have
thus far been found.Comment: 28 pages, to appear in J. Math. Phy
Amplitude analysis of reactions pi(-)p->etapi(-)p and pi(-)p->etapi(0)n on polarized target and the exotic 1-+ meson
Recently several experimental groups analysed data on and reactions with exotic -wave and
found a conflicting evidence for an exotic meson . High
statistics data on these reactions are presently analysed by BNL E852
Collaboration. All these analyses are based on the crucial assumption that the
production amplitudes do not depend on nucleon spin. This assumption is in
sharp conflict with the results of measurements of ,
and on polarized targets at
CERN which find a strong dependence of production amplitudes on nucleon spin.
To ascertain the existence of exotic meson , it is necessary to
perform a model-independent amplitude analysis of reactions and . We demonstrate that measurements of
these reactions on transversely polarized targets enable the required model
independent amplitude analysis without the assumption that production
amplitudes are independent on nucleon spin. We suggest that high statistics
measurements of reactions and be made on polarized targets at BNL and at Protvino IHEP, and that
model-independent amplitude analyses of this polarized data be performed to
advance hadron spectroscopy on the level of spin dependent production
amplitudes.Comment: 23 page
Transitions and Probes in Turbulent Helium
Previous analysis of a Paris turbulence experiment \cite{zoc94,tab95} shows a
transition at the Taylor Reynolds number \rel \approx 700. Here correlation
function data is analyzed which gives further evidence for this transition. It
is seen in both the power spectrum and in structure function measurements. Two
possible explanations may be offered for this observed transition: that it is
intrinsic to the turbulence flow in this closed box experiment or that it is an
effect of a change in the flow around the anemometer. We particularly examine a
pair of ``probe effects''. The first is a thermal boundary layer which does
exist about the probe and does limit the probe response, particularly at high
frequencies. Arguments based on simulations of the response and upon
observations of dissipation suggests that this effect is only crucial beyond
\rel\approx 2000. The second effect is produced by vortex shedding behind the
probe. This has been seen to produce a large modification in some of the power
spectra for large \rel. It might also complicate the interpretation of the
experimental results. However, there seems to be a remaining range of data for
\rel < 1300 uncomplicated by these effects, and which are thus suggestive of
an intrinsic transition.Comment: uuencoded .ps files. submitted to PRE. 12 figures are sent upon
request to jane wang ([email protected]
MCAM/MUC18/CD146 as a multifaceted warning marker of melanoma progression in liquid biopsy
Human malignant melanoma shows a high rate of mortality after metastasization, and its incidence is continuously rising worldwide. Several studies have suggested that MCAM/MUC18/CD146 plays an important role in the progression of this malignant disease. MCAM/MUC18/CD146 is a typical single-spanning transmembrane glycoprotein, existing as two membrane isoforms, long and short, and an additional soluble form, sCD146. We previously documented that molecular MCAM/MUC18/CD146 expression is strongly associated with disease progression. Recently, we showed that MCAM/MUC18/CD146 and ABCB5 can serve as melanoma-specific-targets in the selection of highly primitive circulating melanoma cells, and constitute putative proteins associated with disease spreading progression. Here, we analyzed CD146 molecular expression at onset or at disease recurrence in an enlarged melanoma case series. For some patients, we also performed the time courses of molecular monitoring. Moreover, we explored the role of soluble CD146 in different cohorts of melanoma patients at onset or disease progression, rather than in clinical remission, undergoing immune therapy or free from any clinical treatment. We showed that MCAM/MUC18/CD146 can be considered as: (1) a membrane antigen suitable for identification and enrichment in melanoma liquid biopsy; (2) a highly effective molecular "warning " marker for minimal residual disease monitoring; and (3) a soluble protein index of inflammation and putative response to therapeutic treatments
The European Photon Imaging Camera on XMM-Newton: The MOS Cameras
The EPIC focal plane imaging spectrometers on XMM-Newton use CCDs to record
the images and spectra of celestial X-ray sources focused by the three X-ray
mirrors. There is one camera at the focus of each mirror; two of the cameras
contain seven MOS CCDs, while the third uses twelve PN CCDs, defining a
circular field of view of 30 arcmin diameter in each case. The CCDs were
specially developed for EPIC, and combine high quality imaging with spectral
resolution close to the Fano limit. A filter wheel carrying three kinds of
X-ray transparent light blocking filter, a fully closed, and a fully open
position, is fitted to each EPIC instrument. The CCDs are cooled passively and
are under full closed loop thermal control. A radio-active source is fitted for
internal calibration. Data are processed on-board to save telemetry by removing
cosmic ray tracks, and generating X-ray event files; a variety of different
instrument modes are available to increase the dynamic range of the instrument
and to enable fast timing. The instruments were calibrated using laboratory
X-ray beams, and synchrotron generated monochromatic X-ray beams before launch;
in-orbit calibration makes use of a variety of celestial X-ray targets. The
current calibration is better than 10% over the entire energy range of 0.2 to
10 keV. All three instruments survived launch and are performing nominally in
orbit. In particular full field-of-view coverage is available, all electronic
modes work, and the energy resolution is close to pre-launch values. Radiation
damage is well within pre-launch predictions and does not yet impact on the
energy resolution. The scientific results from EPIC amply fulfil pre-launch
expectations.Comment: 9 pages, 11 figures, accepted for publication in the A&A Special
Issue on XMM-Newto
Evidence for Exotic J^{PC}=1^{-+} Meson Production in the Reaction pi- p --> eta pi- p at 18 GeV/c
Details of the analysis of the eta pi- system studied in the reaction pi^{-}
p --> eta pi^{-} p at 18 GeV/c are given. Separate analyses for the 2 gamma and
pi+ pi- pi0 decay modes of the eta are presented. An amplitude analysis of the
data indicates the presence of interference between the a(2)(1320)- and a
J^{PC}=1^{-+} wave between 1.2 and 1.6 GeV/c^2. The phase difference between
these waves shows phase motion not attributable solely to the a(2)(1320)-. The
data can be fitted by interference between the a(2)(1320)- and an exotic 1^{-+}
resonance with M = 1370 +-16 +50 -30} MeV/c^2 and Gamma = 385 +- 40 +65 -105
MeV/c^2. Our results are compared with those of other experiments.Comment: 50 pages of text and 34 figure
Transiting exoplanets from the CoRoT space mission VIII. CoRoT-7b: the first Super-Earth with measured radius
We report the discovery of very shallow (DF/F = 3.4 10-4), periodic dips in
the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite,
which we interpret as due to the presence of a transiting companion. We
describe the 3-colour CoRoT data and complementary ground-based observations
that support the planetary nature of the companion. Methods. We use CoRoT color
information, good angular resolution ground-based photometric observations in-
and out- of transit, adaptive optics imaging, near-infrared spectroscopy and
preliminary results from Radial Velocity measurements, to test the diluted
eclipsing binary scenarios. The parameters of the host star are derived from
optical spectra, which were then combined with the CoRoT light curve to derive
parameters of the companion. We examine carefully all conceivable cases of
false positives, and all tests performed support the planetary hypothesis.
Blends with separation larger than 0.40 arcsec or triple systems are almost
excluded with a 8 10-4 risk left. We conclude that, as far as we have been
exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which
we derive a period of 0.853 59 +/- 3 10-5 day and a radius of Rp = 1.68 +/-
0.09 REarth. Analysis of preliminary radial velocity data yields an upper limit
of 21 MEarth for the companion mass, supporting the finding.
CoRoT-7b is very likely the first Super-Earth with a measured radius.Comment: Accepted in Astronomy and Astrophysics; typos and language
corrections; version sent to the printer w few upgrade
- …