181 research outputs found

    Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance

    Get PDF
    BACKGROUND:The impact of human activities on the environmental resistome has been documented in many studies, but there remains the controversial question of whether the increased antibiotic resistance observed in anthropogenically impacted environments is just a result of contamination by resistant fecal microbes or is mediated by indigenous environmental organisms. Here, to determine exactly how anthropogenic influences shape the environmental resistome, we resolved the microbiome, resistome, and mobilome of the planktonic microbial communities along a single river, the Han, which spans a gradient of human activities. RESULTS:The bloom of antibiotic resistance genes (ARGs) was evident in the downstream regions and distinct successional dynamics of the river resistome occurred across the spatial continuum. We identified a number of widespread ARG sequences shared between the river, human gut, and pathogenic bacteria. These human-related ARGs were largely associated with mobile genetic elements rather than particular gut taxa and mainly responsible for anthropogenically driven bloom of the downstream river resistome. Furthermore, both sequence- and phenotype-based analyses revealed environmental relatives of clinically important proteobacteria as major carriers of these ARGs. CONCLUSIONS:Our results demonstrate a more nuanced view of the impact of anthropogenic activities on the river resistome: fecal contamination is present and allows the transmission of ARGs to the environmental resistome, but these mobile genes rather than resistant fecal bacteria proliferate in environmental relatives of their original hosts. Video abstract

    Tristetraprolin down-regulates IL-23 expression in colon cancer cells.

    Get PDF
    mRNA 3'UTR demonstrated that the ARE cluster between the third and fifth AREs was responsible for TTP-mediated destabilization of IL-23 mRNA. A RNA electrophoretic mobility shift assay confirmed that TTP binds to this ARE cluster. Taken together, these results demonstrate that TTP acts as a negative regulator of IL-23 gene expression in mouse colon cancer cells and suggest its potential application as a novel therapeutic target to control IL-23-mediated tumor promotion

    Detection of an intermediate during the unfolding process of the dimeric ketosteroid isomerase

    Get PDF
    AbstractFailure to detect the intermediate in spite of its existence often leads to the conclusion that two-state transition in the unfolding process of the protein can be justified. In contrast to the previous equilibrium unfolding experiment fitted to a two-state model by circular dichroism and fluorescence spectroscopies, an equilibrium unfolding intermediate of a dimeric ketosteroid isomerase (KSI) could be detected by small angle X-ray scattering (SAXS) and analytical ultracentrifugation. The sizes of KSI were determined to be 18.7Å in 0M urea, 17.3Å in 5.2M urea, and 25.1Å in 7M urea by SAXS. The size of KSI in 5.2M urea was significantly decreased compared with those in 0M and 7M urea, suggesting the existence of a compact intermediate. Sedimentation velocity as obtained by ultracentrifugation confirmed that KSI in 5.2M urea is distinctly different from native and fully-unfolded forms. The sizes measured by pulse field gradient nuclear magnetic resonance (NMR) spectroscopy were consistent with those obtained by SAXS. Discrepancy of equilibrium unfolding studies between size measurement methods and optical spectroscopies might be due to the failure in detecting the intermediate by optical spectroscopic methods. Further characterization of the intermediate using 1H NMR spectroscopy and Kratky plot supported the existence of a partially-folded form of KSI which is distinct from those of native and fully-unfolded KSIs. Taken together, our results suggest that the formation of a compact intermediate should precede the association of monomers prior to the dimerization process during the folding of KSI

    Silver nanoparticles modify VEGF signaling pathway and mucus hypersecretion in allergic airway inflammation

    Get PDF
    The anti-inflammatory action of silver nanoparticles (NPs) has been reported in a murine model of asthma in a previous study. But more specific mechanisms of silver NPs in an attenuation of allergic airway inflammation have not yet been established. Vascular and mucous changes are believed to contribute largely in pathophysiology in asthma. Among various factors related to vascular changes, vascular endothelial growth factor (VEGF) plays a pivotal role in vascular changes in asthma. Mucin proteins MUC5AC and MUC5B have been implicated as markers of goblet cell metaplasia in lung pathologies. The aim of this study was to investigate the effects of silver NPs on VEGF signaling pathways and mucus hypersecretion. Ovalbumin (OVA)-inhaled female BALBc mice were used to evaluate the role of silver NPs and the related molecular mechanisms in allergic airway disease. In this study, with an OVA-induced murine model of allergic airway disease, it was found that the increased levels of hypoxia-inducible factor (HIF)-1α, VEGF, phosphatidylinositol-3 kinase (PI3K) and phosphorylated-Akt levels, and mucous glycoprotein expression (Muc5ac) in lung tissues were substantially decreased by the administration of silver NPs. In summary, silver NPs substantially suppressed mucus hypersecretion and PI3K/HIF-1α/VEGF signaling pathway in an allergic airway inflammation

    In Utero Development of the Fetal Gall Bladder in the Korean Population

    Get PDF
    OBJECTIVE: To provide reference ranges of the fetal gall bladder in the Korean population. MATERIALS AND METHODS: Fetal gall bladder development was evaluated in well-dated, non-anomalous fetuses in the Korean population between February and April 2003 and the visualization rate and reference values were determined from the obtained data. RESULTS: The visualization rate of the fetal gall bladder increased as gestation advanced to a plateau above 90%, which was maintained between 16 and 34 weeks. The measured parameters from the fetal gall bladder had a significant positive relationship with gestational age (p = 0.000 for all cases), and the correlation of length and area with the gestational age (r = 0.741 and r = 0.690, respectively) was better than the correlation of width, height, and volume with gestational age. The repeatability coefficients and coefficients of variation between the two operators were 5.56 mm and 12.9% for the length and 344.11 mm(2) and 33.52% for the area. The median length of the fetal gall bladder in the Korean population was not significantly different from the mean length of gall bladders in the Caucasian and African-American populations (p = 0.915). CONCLUSION: We have provided reference values for the fetal gall bladder throughout the gestation period in the Korean population

    Mycobacterium seoulense sp. nov., a slowly growing scotochromogenic species

    Get PDF
    A previously undescribed, slowly growing, scotochromogenic mycobacterium was isolated from a patient with symptomatic pulmonary infection during hsp65 sequence-based identification of Korean clinical isolates. Phenetic characteristics of this strain were generally similar to those of Mycobacterium nebraskense and Mycobacterium scrofulaceum. However, some phenetic characteristics differentiated it from these two species. Its 16S rRNA gene sequences were unique and phylogenetic analysis based on 16S rRNA gene sequences placed the organism in the slowly growing Mycobacterium group close to M. nebraskense and M. scrofulaceum. Its unique mycolic acid profiles and the results of phylogenetic analysis based on two independent alternative chronometer molecules, hsp65 and rpoB, confirmed the taxonomic status of this strain as representing a novel species. These data support the conclusion that this strain represents a novel mycobacterial species, for which the name Mycobacterium seoulense sp. nov. is proposed. The type strain is strain 03-19(T) (=DSM 44998(T)=KCTC 19146(T))

    The usefulness of contrast-enhanced ultrasonography in the early detection of hepatocellular carcinoma viability after transarterial chemoembolization: pilot study

    Get PDF
    Background/AimsThe therapeutic effect of transarterial chemoembolization (TACE) against hepatocellular carcinoma (HCC) is usually assessed using multidetector computed tomography (MDCT). However, dense lipiodol depositions can mask the enhancement of viable HCC tissue in MDCT. Contrast-enhanced ultrasonography (CEUS) could be effective in detecting small areas of viability and patency in vessels. We investigated whether arterial enhancement in CEUS after treatment with TACE can be used to detect HCC viability earlier than when using MDCT.MethodsTwelve patients received CEUS, MDCT, and gadoxetic-acid-enhanced dynamic magnetic resonance imaging (MRI) at baseline and 4 and 12 weeks after TACE. The definition of viable HCC was defined as MRI positivity after 4 or 12 weeks.ResultsEight of the 12 patients showed MRI positivity at 4 or 12 weeks. All patients with positive CEUS findings at 4 weeks (n=8) showed MRI positivity and residual viable HCC at 4 or 12 weeks. Five of the eight patients with positive CEUS findings at 4 weeks had negative results on the 4-week MDCT scan. Four (50%) of these eight patients did not have MRI positivity at 4 weeks and were ultimately confirmed as having residual HCC tissue at the 12-week MRI. Kappa statistics revealed near-perfect agreement between CEUS and MRI (κ=1.00) and substantial agreement between MDCT and MRI (κ=0.67).ConclusionsIn the assessment of the response to TACE, CEUS at 4 weeks showed excellent results for detecting residual viable HCC, which suggests that CEUS can be used as an early additive diagnosis tool when deciding early additional treatment with TACE

    A New Steroidal Saponin from the Tubers of Ophiopogon japonicus and Its Protective Effect Against Cisplatin-Induced Renal Cell Toxicity

    Get PDF
    A new furostanol saponin, ophiopogonin T, was isolated from the tubers of Ophiopogon japonicus. Its structure was established by extensive spectroscopic techniques including 1D ( 1 H and 13 C) and 2D nuclear magnetic resonance (NMR) experiments (correlation spectroscopy (COSY), heteronuclear single quantum coherence (HSQC), heteronuclear multiple bond correlation (HMBC) and nuclear Overhauser effect spectroscopy (NOESY)), high-resolution electrospray ionization mass spectrometry (ESIMS), and chemical methods. Using cell-based assays, this compound was evaluated for its cytotoxic effect on cancer cell lines and its protective effect against anticancer drug-induced nephrotoxicity. Cisplatin-induced cytotoxicity in porcine kidney (LLC-PK1) cells was significantly reduced upon treatment with ophiopogonin T, without affecting human hepatoma (HepG2) cancer cell proliferation or tube formation in human umbilical vein endothelial cells (HUVECs). These results collectively reflect the beneficial effect of ophiopogonin T on the side effects of cisplatin
    corecore