4 research outputs found

    CRMP4 and CRMP2 Interact to Coordinate Cytoskeleton Dynamics, Regulating Growth Cone Development and Axon Elongation

    Get PDF
    Cytoskeleton dynamics are critical phenomena that underpin many fundamental cellular processes. Collapsin response mediator proteins (CRMPs) are highly expressed in the developing nervous system, mediating growth cone guidance, neuronal polarity, and axonal elongation. However, whether and how CRMPs associate with microtubules and actin coordinated cytoskeletal dynamics remain unknown. In this study, we demonstrated that CRMP2 and CRMP4 interacted with tubulin and actin in vitro and colocalized with the cytoskeleton in the transition-zone in developing growth cones. CRMP2 and CRMP4 also interacted with one another coordinately to promote growth cone development and axonal elongation. Genetic silencing of CRMP2 enhanced, whereas overexpression of CRMP2 suppressed, the inhibitory effects of CRMP4 knockdown on axonal development. In addition, knockdown of CRMP2 or overexpression of truncated CRMP2 reversed the promoting effect of CRMP4. With the overexpression of truncated CRMP2 or CRMP4 lacking the cytoskeleton interaction domain, the promoting effect of CRMP was suppressed. These data suggest a model in which CRMP2 and CRMP4 form complexes to bridge microtubules and actin and thus work cooperatively to regulate growth cone development and axonal elongation

    Relationship between bisphenol A exposure and attention-deficit/hyperactivity disorder: A case-control study for primary school children in Guangzhou, China

    No full text
    Bisphenol A (BPA) is an endocrine-disrupting chemical. Studies have shown that the exposure to BPA is associated with attention-deficit/hyperactivity disorder (ADHD) during adolescent development. However the direct clinical evidence is limited. To investigate the possible association between environmental BPA exposure and the altered behavior of children, a case-control study was conducted with children aged 6-12 years in Guangzhou, China. Two hundred fifteen children diagnosed with ADHD and 253 healthy children from Guangzhou were recruited as the case and control groups, respectively. Urinary BPA and 8-hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of oxidative DNA damage) concentrations were determined by high-performance liquid chromatography/tandem spectrometry. The results showed that concentrations of urinary SPA for the case group were significantly higher than those for the control group (3.44 vs 1.70 mu g/L; 4.63 vs 1.71 mu g/g Crt. p < .001). A stepwise increase in the odds ratios for ADHD was observed with the increasing quartiles of children's urinary BPA (first quartile: reference category; second quartile adjusted OR: 1.79, 95% CI: 0.95-3.37; third quartile adjusted OR: 7.44, 95% CI: 3.91-14.1; fourth quartile adjusted OR: 9.41, 95% CI: 4.91-18.1). When the BPA levels were stratified by gender, the odds of ADHD among boys and girls increased significantly with urinary BPA concentrations (adjusted OR: 4.58, 95% CI: 2.84-7.37; adjusted OR: 2.83, 95% CI: 1.17-6.84). Urinary 8-OHdG concentrations in the ADHD children were significantly higher than those in the control group. Furthermore, the linear regression analysis results indicated that a significant relationship existed between BPA exposure and 8-OHdG levels (R = 0.257, p < .001). Our findings provide direct evidence that childhood BPA exposure may be related to ADHD and 8-OHdG concentrations for children. Moreover, BPA exposure could increase the higher occurrence of ADHD for boy than for girls. (C) 2017 Elsevier Ltd. All rights reserved

    Association among blood BPDE-DNA adduct, serum interleukin-8 (IL-8) and DNA strand breaks for children with pulmonary diseases

    No full text
    Exposure to benzo[a]pyrene (B[a]P) may be a risk factor for pulmonary diseases. To investigate the correlations among B[a]P exposure level, DNA strand breaks and pulmonary inflammation, we recruited 83 children diagnosed with pulmonary diseases and 63 healthy children from Guangzhou, China. Results showed that the levels of Benzo[a]pyrene diol epoxide (BPDE) DNA adduct in blood and IL-8 in serum in case group were significantly higher than those in control group (p < 0.01). Moreover, levels of atmospheric B[a]P in case group was about twice of those in control group, which was consistent with the levels of BPDE-DNA adduct in blood. Significant positive correlations were observed among the levels of BPDE-DNA adduct, IL-8 and DNA strand breaks (p < 0.05). Our findings indicate that environmental air is an important exposure source of B[a]P and higher B[a]P exposure may contribute to the occurrence of pulmonary inflammation and lead to high health risks
    corecore