25,573 research outputs found

    Controlling dielectric and pyroelectric properties of compositionally graded ferroelectric rods by an applied pressure

    Get PDF
    Author name used in this publication: C. H. Woo2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Behavior of a movable electrode in piezo-response mode of an atomic force microscope

    Get PDF
    Author name used in this publication: C. H. XuAuthor name used in this publication: C. H. WooAuthor name used in this publication: S. Q. ShiAuthor name used in this publication: Y. Wang2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Form Factors and Strong Couplings of Heavy Baryons from QCD Light-Cone Sum Rules

    Full text link
    We derive QCD light-cone sum rules for the hadronic matrix elements of the heavy baryon transitions to nucleon. In the correlation functions the Λc,Σc\Lambda_c,\Sigma_c and Λb\Lambda_b -baryons are interpolated by three-quark currents and the nucleon distribution amplitudes are used. To eliminate the contributions of negative parity heavy baryons, we combine the sum rules obtained from different kinematical structures. The results are then less sensitive to the choice of the interpolating current. We predict the Λbp\Lambda_{b}\to p form factor and calculate the widths of the Λbpνl\Lambda_{b}\to p\ell\nu_l and Λbpπ\Lambda_{b}\to p \pi decays. Furthermore, we consider double dispersion relations for the same correlation functions and derive the light-cone sum rules for the ΛcND()\Lambda_cND^{(*)} and ΣcND()\Sigma_cND^{(*)} strong couplings. Their predicted values can be used in the models of charm production in ppˉp\bar{p} collisions.Comment: 45 pages, 3 figure

    A Microcantilever-based Gas Flow Sensor for Flow Rate and Direction Detection

    Get PDF
    The purpose of this paper is to apply characteristics of residual stress that causes cantilever beams to bend for manufacturing a micro-structured gas flow sensor. This study uses a silicon wafer deposited silicon nitride layers, reassembled the gas flow sensor with four cantilever beams that perpendicular to each other and manufactured piezoresistive structure on each micro-cantilever by MEMS technologies, respectively. When the cantilever beams are formed after etching the silicon wafer, it bends up a little due to the released residual stress induced in the previous fabrication process. As air flows through the sensor upstream and downstream beam deformation was made, thus the airflow direction can be determined through comparing the resistance variation between different cantilever beams. The flow rate can also be measured by calculating the total resistance variations on the four cantilevers.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Low temperature vortex liquid in La2xSrxCuO4\rm La_{2-x}Sr_xCuO_4

    Full text link
    In the cuprates, the lightly-doped region is of major interest because superconductivity, antiferromagnetism, and the pseudogap state \cite{Timusk,Lee,Anderson} come together near a critical doping value xcx_c. These states are deeply influenced by phase fluctuations \cite{Emery} which lead to a vortex-liquid state that surrounds the superconducting region \cite{WangPRB01,WangPRB06}. However, many questions \cite{Doniach,Fisher,FisherLee,Tesanovic,Sachdev} related to the nature of the transition and vortex-liquid state at very low tempera- tures TT remain open because the diamagnetic signal is difficult to resolve in this region. Here, we report torque magnetometry results on La2xSrxCuO4\rm La_{2-x}Sr_xCuO_4 (LSCO) which show that superconductivity is lost at xcx_c by quantum phase fluctuations. We find that, in a magnetic field HH, the vortex solid-to-liquid transition occurs at field HmH_m much lower than the depairing field Hc2H_{c2}. The vortex liquid exists in the large field interval HmHc2H_m \ll H_{c2}, even in the limit TT\to0. The resulting phase diagram reveals the large fraction of the xx-HH plane occupied by the quantum vortex liquid.Comment: 6 pages, 4 figures, submitted to Nature Physic

    In-plane elastic wave propagation and band-gaps in layered functionally graded phononic crystals

    Get PDF
    AbstractIn-plane wave propagation in layered phononic crystals composed of functionally graded interlayers arisen from the solid diffusion of homogeneous isotropic materials of the crystal is considered. Wave transmission and band-gaps due to the material gradation and incident wave-field are investigated. A classification of band-gaps in layered phononic crystals is proposed. The classification relies on the analysis of the eigenvalues of the transfer matrix for a unit-cell and the asymptotics derived for the transmission coefficient. Two kinds of band-gaps, where the transmission coefficient decays exponentially with the number of unit-cells are specified. The so-called low transmission pass-bands are introduced in order to identify frequency ranges, in which the transmission is sufficiently low for engineering applications, but it does not tend to zero exponentially as the number of unit-cells tends to infinity. A polyvalent analysis of the geometrical and physical parameters on band-gaps is presented

    Genotypic analysis of Klebsiella pneumoniae isolates in a Beijing hospital reveals high genetic diversity and clonal population structure of drug-resistant isolates.

    Get PDF
    Background The genetic diversity and the clinical relevance of the drug-resistant Klebsiella pneumoniae isolates from hospital settings are largely unknown. We thus conducted this prospective study to analyze the molecular epidemiology of K. pneumoniae isolates from patients being treated in the 306 Hospital in Beijing, China for the period of November 1, 2010–October 31, 2011. Methodology/Principal Findings Antibiotic susceptibility testing, PCR amplification and sequencing of the drug resistance-associated genes, and multilocus sequence typing (MLST) were conducted. A total of 163 isolates were analyzed. The percentage of MDR, XDR and PDR isolates were 63.8% (104), 20.9 (34), and 1.8% (3), respectively. MLST results showed that 60 sequence types (STs) were identified, which were further separated by eBURST into 13 clonal complexes and 18 singletons. The most dominant ST was ST15 (10.4%). Seven new alleles and 24 new STs were first identified in this study. Multiple logistic regression analysis revealed that certain clinical characteristics were associated with those prevalent STs such as: from ICU, from medical ward, from community acquired infection, from patients without heart disease, from patients with treatment success, susceptible to extended spectrum cephalosporin, susceptible to cephamycins, susceptible to fluoroquinolones, and with MDR. Conclusions/Significance Our data indicate that certain drug-resistant K. pneumoniae clones are highly prevalent and are associated with certain clinical characteristics in hospital settings. Our study provides evidence demonstrating that intensive nosocomial infection control measures are urgently needed.published_or_final_versio

    Negative phase time for Scattering at Quantum Wells: A Microwave Analogy Experiment

    Full text link
    If a quantum mechanical particle is scattered by a potential well, the wave function of the particle can propagate with negative phase time. Due to the analogy of the Schr\"odinger and the Helmholtz equation this phenomenon is expected to be observable for electromagnetic wave propagation. Experimental data of electromagnetic wells realized by wave guides filled with different dielectrics confirm this conjecture now.Comment: 10 pages, 6 figure
    corecore