112 research outputs found

    On the generalized Davenport constant and the Noether number

    Full text link
    Known results on the generalized Davenport constant related to zero-sum sequences over a finite abelian group are extended to the generalized Noether number related to the rings of polynomial invariants of an arbitrary finite group. An improved general upper bound is given on the degrees of polynomial invariants of a non-cyclic finite group which cut out the zero vector.Comment: 14 page

    Induced pseudoscalar coupling of the proton weak interaction

    Full text link
    The induced pseudoscalar coupling gpg_p is the least well known of the weak coupling constants of the proton's charged--current interaction. Its size is dictated by chiral symmetry arguments, and its measurement represents an important test of quantum chromodynamics at low energies. During the past decade a large body of new data relevant to the coupling gpg_p has been accumulated. This data includes measurements of radiative and non radiative muon capture on targets ranging from hydrogen and few--nucleon systems to complex nuclei. Herein the authors review the theoretical underpinnings of gpg_p, the experimental studies of gpg_p, and the procedures and uncertainties in extracting the coupling from data. Current puzzles are highlighted and future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic

    Temporo-Spatial Dynamics of Event-Related EEG Beta Activity during the Initial Contingent Negative Variation

    Get PDF
    In the electroencephalogram (EEG), early anticipatory processes are accompanied by a slow negative potential, the initial contingent negative variation (iCNV), occurring between 500 and 1500 ms after cue onset over prefrontal cortical regions in tasks with cue-target intervals of about 3 s or longer. However, the temporal sequence of the distributed cortical activity contributing to iCNV generation remains unclear. During iCNV generation, selectively enhanced low-beta activity has been reported. Here we studied the temporal order of activation foci in cortical regions assumed to underlie iCNV generation using source reconstruction of low-beta (13–18 Hz) activity. During the iCNV, elicited by a cued simple reaction-time task, low-beta power peaked first (750 ms after cue onset) in anterior frontal and limbic regions and last (140 ms later) in posterior areas. This activity occurred 3300 ms before target onset and provides evidence for the temporally ordered involvement of both cognitive-control and motor-preparation processes already at early stages during the preparation for speeded action

    Divergent Cortical Generators of MEG and EEG during Human Sleep Spindles Suggested by Distributed Source Modeling

    Get PDF
    Background: Sleep spindles are,1-second bursts of 10–15 Hz activity, occurring during normal stage 2 sleep. In animals, sleep spindles can be synchronous across multiple cortical and thalamic locations, suggesting a distributed stable phaselocked generating system. The high synchrony of spindles across scalp EEG sites suggests that this may also be true in humans. However, prior MEG studies suggest multiple and varying generators. Methodology/Principal Findings: We recorded 306 channels of MEG simultaneously with 60 channels of EEG during naturally occurring spindles of stage 2 sleep in 7 healthy subjects. High-resolution structural MRI was obtained in each subject, to define the shells for a boundary element forward solution and to reconstruct the cortex providing the solution space for a noise-normalized minimum norm source estimation procedure. Integrated across the entire duration of all spindles, sources estimated from EEG and MEG are similar, diffuse and widespread, including all lobes from both hemispheres. However, the locations, phase and amplitude of sources simultaneously estimated from MEG versus EEG are highly distinct during the same spindles. Specifically, the sources estimated from EEG are highly synchronous across the cortex, whereas those from MEG rapidly shift in phase, hemisphere, and the location within the hemisphere. Conclusions/Significance: The heterogeneity of MEG sources implies that multiple generators are active during huma

    Implementation of preventive strength training in residential geriatric care: a multi-centre study protocol with one year of interventions on multiple levels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is scientific evidence that preventive physical exercise is effective even in high age. In contrast, there are few opportunities of preventive exercise for highly aged people endangered by or actually in need of care. For example, they would not be able to easily go to training facilities; standard exercises may be too intensive and therefore be harmful to them; orientation disorders like dementia would exacerbate individuals and groups in following instructions and keeping exercises going. In order to develop appropriate interventions, these and other issues were assigned to different levels: the individual-social level (ISL), the organisational-institutional level (OIL) and the political-cultural level (PCL). Consequently, this conceptional framework was utilised for development, implementation and evaluation of a new strength and balance exercise programme for old people endangered by or actually in need of daily care. The present paper contains the development of this programme labeled "fit for 100", and a study protocol of an interventional single-arm multi-centre trial.</p> <p>Methods</p> <p>The intervention consisted of (a) two group training sessions every week over one year, mainly resistance exercises, accompanied by sensorimotor and communicative group exercises and games (ISL), (b) a sustainable implementation concept, starting new groups by instructors belonging to the project, followed by training and supervision of local staff, who stepwise take over the group (OIL), (c) informing and convincing activities in professional, administrative and governmental contexts, public relation activities, and establishing an advisory council with renowned experts and public figures (PCL). Participating institutions of geriatric care were selected through several steps of quality criteria assessment. Primary outcome measures were continuous documentation of individual participation (ISL), number of groups continued without external financial support (at the end of the project, and after one year) (OIL). Secondary outcome was measured by sensorimotor tests and care-related assessments in the beginning and every 16 weeks (ISL), by qualitative outcome descriptions 12 months after group implementation (OIL) and by analysis of media response and structured interviews with stakeholders, also after 12 months (PCL).</p> <p>Conclusion</p> <p>Exemplarily, preventive exercise has been established for a neglected target population. The multi-level approach used here seems to be helpful to overcome institutional and individual (attitude) barriers.</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN55213782</p

    Persistent and polarised global actin flow is essential for directionality during cell migration

    Get PDF
    Cell migration is hypothesized to involve a cycle of behaviours beginning with leading edge extension. However, recent evidence suggests that the leading edge may be dispensable for migration, raising the question of what actually controls cell directionality. Here, we exploit the embryonic migration of Drosophila macrophages to bridge the different temporal scales of the behaviours controlling motility. This approach reveals that edge fluctuations during random motility are not persistent and are weakly correlated with motion. In contrast, flow of the actin network behind the leading edge is highly persistent. Quantification of actin flow structure during migration reveals a stable organization and asymmetry in the cell-wide flowfield that strongly correlates with cell directionality. This organization is regulated by a gradient of actin network compression and destruction, which is controlled by myosin contraction and cofilin-mediated disassembly. It is this stable actin-flow polarity, which integrates rapid fluctuations of the leading edge, that controls inherent cellular persistence

    Genes but Not Genomes Reveal Bacterial Domestication of Lactococcus Lactis

    Get PDF
    BACKGROUND: The population structure and diversity of Lactococcus lactis subsp. lactis, a major industrial bacterium involved in milk fermentation, was determined at both gene and genome level. Seventy-six lactococcal isolates of various origins were studied by different genotyping methods and thirty-six strains displaying unique macrorestriction fingerprints were analyzed by a new multilocus sequence typing (MLST) scheme. This gene-based analysis was compared to genomic characteristics determined by pulsed-field gel electrophoresis (PFGE). METHODOLOGY/PRINCIPAL FINDINGS: The MLST analysis revealed that L. lactis subsp. lactis is essentially clonal with infrequent intra- and intergenic recombination; also, despite its taxonomical classification as a subspecies, it displays a genetic diversity as substantial as that within several other bacterial species. Genome-based analysis revealed a genome size variability of 20%, a value typical of bacteria inhabiting different ecological niches, and that suggests a large pan-genome for this subspecies. However, the genomic characteristics (macrorestriction pattern, genome or chromosome size, plasmid content) did not correlate to the MLST-based phylogeny, with strains from the same sequence type (ST) differing by up to 230 kb in genome size. CONCLUSION/SIGNIFICANCE: The gene-based phylogeny was not fully consistent with the traditional classification into dairy and non-dairy strains but supported a new classification based on ecological separation between "environmental" strains, the main contributors to the genetic diversity within the subspecies, and "domesticated" strains, subject to recent genetic bottlenecks. Comparison between gene- and genome-based analyses revealed little relationship between core and dispensable genome phylogenies, indicating that clonal diversification and phenotypic variability of the "domesticated" strains essentially arose through substantial genomic flux within the dispensable genome

    Low-mass and sub-stellar eclipsing binaries in stellar clusters

    Full text link
    We highlight the importance of eclipsing double-line binaries in our understanding on star formation and evolution. We review the recent discoveries of low-mass and sub-stellar eclipsing binaries belonging to star-forming regions, open clusters, and globular clusters identified by ground-based surveys and space missions with high-resolution spectroscopic follow-up. These discoveries provide benchmark systems with known distances, metallicities, and ages to calibrate masses and radii predicted by state-of-the-art evolutionary models to a few percent. We report their density and discuss current limitations on the accuracy of the physical parameters. We discuss future opportunities and highlight future guidelines to fill gaps in age and metallicity to improve further our knowledge of low-mass stars and brown dwarfs.Comment: 30 pages, 5 figures, no table. Review pape

    X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    Get PDF
    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4−/− mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases
    corecore