25,465 research outputs found
Protection of Fundamental Rights Post-Lisbon:The Interaction between the EU Charter of Fundamental Rights, the European Convention on Human Rights (ECHR) and National Constitutions (FIDE National Report for the United Kingdom)
This is the United Kingdom national report for the FIDE XXV Congress on the 'Protection of Fundamental Rights Post-Lisbon'. The national report consist of answers from a UK perspective to questions posed by the general rapporteur on the following general topics: Nature and scope of fundamental rights protected; Horizontal Effect and Collision of rights; Consequences of the entry into force of the EU Charter of Fundamental Rights; Consequences of the accession of the EU to the ECHR; The future of fundamental rights protection, national and European, in the EU as an ‘area of fundamental rights’
Rapid planetesimal formation in turbulent circumstellar discs
The initial stages of planet formation in circumstellar gas discs proceed via
dust grains that collide and build up larger and larger bodies (Safronov 1969).
How this process continues from metre-sized boulders to kilometre-scale
planetesimals is a major unsolved problem (Dominik et al. 2007): boulders stick
together poorly (Benz 2000), and spiral into the protostar in a few hundred
orbits due to a head wind from the slower rotating gas (Weidenschilling 1977).
Gravitational collapse of the solid component has been suggested to overcome
this barrier (Safronov 1969, Goldreich & Ward 1973, Youdin & Shu 2002). Even
low levels of turbulence, however, inhibit sedimentation of solids to a
sufficiently dense midplane layer (Weidenschilling & Cuzzi 1993, Dominik et al.
2007), but turbulence must be present to explain observed gas accretion in
protostellar discs (Hartmann 1998). Here we report the discovery of efficient
gravitational collapse of boulders in locally overdense regions in the
midplane. The boulders concentrate initially in transient high pressures in the
turbulent gas (Johansen, Klahr, & Henning 2006), and these concentrations are
augmented a further order of magnitude by a streaming instability (Youdin &
Goodman 2005, Johansen, Henning, & Klahr 2006, Johansen & Youdin 2007) driven
by the relative flow of gas and solids. We find that gravitationally bound
clusters form with masses comparable to dwarf planets and containing a
distribution of boulder sizes. Gravitational collapse happens much faster than
radial drift, offering a possible path to planetesimal formation in accreting
circumstellar discs.Comment: To appear in Nature (30 August 2007 issue). 18 pages (in referee
mode), 3 figures. Supplementary Information can be found at 0708.389
Heat Treated NiP–SiC Composite Coatings: Elaboration and Tribocorrosion Behaviour in NaCl Solution
Tribocorrosion behaviour of heat-treated NiP and NiP–SiC composite coatings was investigated in a 0.6 M NaCl solution. The tribocorrosion tests were performed in a linear sliding tribometer with an electrochemical cell interface. It was analyzed the influence of SiC particles dispersion in the NiP matrix on current density developed, on coefficient of friction and on wear volume loss. The results showed that NiP–SiC composite coatings had a lower wear volume loss compared to NiP coatings. However, the incorporation of SiC particles into the metallic matrix affects the current density developed by the system during the tribocorrosion test. It was verified that not only the volume of co-deposited particles (SiC vol.%) but also the number of SiC particles per coating area unit (and consequently the SiC particles size) have made influence on the tribocorrosion behaviour of NiP–SiC composite coatings
Neutralino versus axion/axino cold dark matter in the 19 parameter SUGRA model
We calculate the relic abundance of thermally produced neutralino cold dark
matter in the general 19 parameter supergravity (SUGRA-19) model. A scan over
GUT scale parameters reveals that models with a bino-like neutralino typically
give rise to a dark matter density \Omega_{\tz_1}h^2\sim 1-1000, i.e. between 1
and 4 orders of magnitude higher than the measured value. Models with higgsino
or wino cold dark matter can yield the correct relic density, but mainly for
neutralino masses around 700-1300 GeV. Models with mixed bino-wino or
bino-higgsino CDM, or models with dominant co-annihilation or A-resonance
annihilation can yield the correct abundance, but such cases are extremely hard
to generate using a general scan over GUT scale parameters; this is indicative
of high fine-tuning of the relic abundance in these cases. Requiring that
m_{\tz_1}\alt 500 GeV (as a rough naturalness requirement) gives rise to a
minimal probably dip in parameter space at the measured CDM abundance. For
comparison, we also scan over mSUGRA space with four free parameters. Finally,
we investigate the Peccei-Quinn augmented MSSM with mixed axion/axino cold dark
matter. In this case, the relic abundance agrees more naturally with the
measured value. In light of our cumulative results, we conclude that future
axion searches should probe much more broadly in axion mass, and deeper into
the axion coupling.Comment: 23 pages including 17 .eps figure
Stage progression and neurological symptoms in Trypanosoma brucei rhodesiense sleeping sickness: role of the CNS inflammatory response
Background: Human African trypanosomiasis progresses from an early (hemolymphatic) stage, through CNS invasion to the late (meningoencephalitic) stage. In experimental infections disease progression is associated with neuroinflammatory responses and neurological symptoms, but this concept requires evaluation in African trypanosomiasis patients, where correct diagnosis of the disease stage is of critical therapeutic importance.
Methodology/Principal Findings: This was a retrospective study on a cohort of 115 T.b.rhodesiense HAT patients recruited in Eastern Uganda. Paired plasma and CSF samples allowed the measurement of peripheral and CNS immunoglobulin and of CSF cytokine synthesis. Cytokine and immunoglobulin expression were evaluated in relation to disease duration, stage progression and neurological symptoms. Neurological symptoms were not related to stage progression (with the exception of moderate coma). Increases in CNS immunoglobulin, IL-10 and TNF-α synthesis were associated with stage progression and were mirrored by a reduction in TGF-β levels in the CSF. There were no significant associations between CNS immunoglobulin and cytokine production and neurological signs of disease with the exception of moderate coma cases. Within the study group we identified diagnostically early stage cases with no CSF pleocytosis but intrathecal immunoglobulin synthesis and diagnostically late stage cases with marginal CSF pleocytosis and no detectable trypanosomes in the CSF.
Conclusions: Our results demonstrate that there is not a direct linkage between stage progression, neurological signs of infection and neuroinflammatory responses in rhodesiense HAT. Neurological signs are observed in both early and late stages, and while intrathecal immunoglobulin synthesis is associated with neurological signs, these are also observed in cases lacking a CNS inflammatory response. While there is an increase in inflammatory cytokine production with stage progression, this is paralleled by increases in CSF IL-10. As stage diagnostics, the CSF immunoglobulins and cytokines studied do not have sufficient sensitivity to be of clinical value
On the selection and design of proteins and peptide derivatives for the production of photoluminescent, red-emitting gold quantum clusters
Novel pathways of the synthesis of photoluminescent gold quantum clusters (AuQCs) using biomolecules as reactants provide biocompatible products for biological imaging techniques. In order to rationalize the rules for the preparation of red-emitting AuQCs in aqueous phase using proteins or peptides, the role of different organic structural units was investigated. Three systems were studied: proteins, peptides, and amino acid mixtures, respectively. We have found that cysteine and tyrosine are indispensable residues. The SH/S-S ratio in a single molecule is not a critical factor in the synthesis, but on the other hand, the stoichiometry of cysteine residues and the gold precursor is crucial. These observations indicate the importance of proper chemical behavior of all species in a wide size range extending from the atomic distances (in the AuI-S semi ring) to nanometer distances covering the larger sizes of proteins assuring the hierarchical structure of the whole self-assembled system
Synthesized grain size distribution in the interstellar medium
We examine a synthetic way of constructing the grain size distribution in the
interstellar medium (ISM). First we formulate a synthetic grain size
distribution composed of three grain size distributions processed with the
following mechanisms that govern the grain size distribution in the Milky Way:
(i) grain growth by accretion and coagulation in dense clouds, (ii) supernova
shock destruction by sputtering in diffuse ISM, and (iii) shattering driven by
turbulence in diffuse ISM. Then, we examine if the observational grain size
distribution in the Milky Way (called MRN) is successfully synthesized or not.
We find that the three components actually synthesize the MRN grain size
distribution in the sense that the deficiency of small grains by (i) and (ii)
is compensated by the production of small grains by (iii). The fraction of each
{contribution} to the total grain processing of (i), (ii), and (iii) (i.e., the
relative importance of the three {contributions} to all grain processing
mechanisms) is 30-50%, 20-40%, and 10-40%, respectively. We also show that the
Milky Way extinction curve is reproduced with the synthetic grain size
distributions.Comment: 10 pages, 6 figures, accepted for publication in Earth, Planets, and
Spac
Observation of squeezed light from one atom excited with two photons
Single quantum emitters like atoms are well-known as non-classical light
sources which can produce photons one by one at given times, with reduced
intensity noise. However, the light field emitted by a single atom can exhibit
much richer dynamics. A prominent example is the predicted ability for a single
atom to produce quadrature-squeezed light, with sub-shot-noise amplitude or
phase fluctuations. It has long been foreseen, though, that such squeezing
would be "at least an order of magnitude more difficult" to observe than the
emission of single photons. Squeezed beams have been generated using
macroscopic and mesoscopic media down to a few tens of atoms, but despite
experimental efforts, single-atom squeezing has so far escaped observation.
Here we generate squeezed light with a single atom in a high-finesse optical
resonator. The strong coupling of the atom to the cavity field induces a
genuine quantum mechanical nonlinearity, several orders of magnitude larger
than for usual macroscopic media. This produces observable quadrature squeezing
with an excitation beam containing on average only two photons per system
lifetime. In sharp contrast to the emission of single photons, the squeezed
light stems from the quantum coherence of photon pairs emitted from the system.
The ability of a single atom to induce strong coherent interactions between
propagating photons opens up new perspectives for photonic quantum logic with
single emittersComment: Main paper (4 pages, 3 figures) + Supplementary information (5 pages,
2 figures). Revised versio
The prescribed mean curvature equation in weakly regular domains
We show that the characterization of existence and uniqueness up to vertical
translations of solutions to the prescribed mean curvature equation, originally
proved by Giusti in the smooth case, holds true for domains satisfying very
mild regularity assumptions. Our results apply in particular to the
non-parametric solutions of the capillary problem for perfectly wetting fluids
in zero gravity. Among the essential tools used in the proofs, we mention a
\textit{generalized Gauss-Green theorem} based on the construction of the weak
normal trace of a vector field with bounded divergence, in the spirit of
classical results due to Anzellotti, and a \textit{weak Young's law} for
-minimizers of the perimeter.Comment: 23 pages, 1 figure --- The results on the weak normal trace of vector
fields have been now extended and moved in a self-contained paper available
at: arXiv:1708.0139
A novel multivariate STeady-state index during general ANesthesia (STAN)
The assessment of the adequacy of general anesthesia for surgery, namely the nociception/anti-nociception balance, has received wide attention from the scientific community. Monitoring systems based on the frontal EEG/EMG, or autonomic state reactions (e.g. heart rate and blood pressure) have been developed aiming to objectively assess this balance. In this study a new multivariate indicator of patients' steady-state during anesthesia (STAN) is proposed, based on wavelet analysis of signals linked to noxious activation. A clinical protocol was designed to analyze precise noxious stimuli (laryngoscopy/intubation, tetanic, and incision), under three different analgesic doses; patients were randomized to receive either remifentanil 2.0, 3.0 or 4.0 ng/ml. ECG, PPG, BP, BIS, EMG and [Formula: see text] were continuously recorded. ECG, PPG and BP were processed to extract beat-to-beat information, and [Formula: see text] curve used to estimate the respiration rate. A combined steady-state index based on wavelet analysis of these variables, was applied and compared between the three study groups and stimuli (Wilcoxon signed ranks, Kruskal-Wallis and Mann-Whitney tests). Following institutional approval and signing the informed consent thirty four patients were enrolled in this study (3 excluded due to signal loss during data collection). The BIS index of the EEG, frontal EMG, heart rate, BP, and PPG wave amplitude changed in response to different noxious stimuli. Laryngoscopy/intubation was the stimulus with the more pronounced response [Formula: see text]. These variables were used in the construction of the combined index STAN; STAN responded adequately to noxious stimuli, with a more pronounced response to laryngoscopy/intubation (18.5-43.1 %, [Formula: see text]), and the attenuation provided by the analgesic, detecting steady-state periods in the different physiological signals analyzed (approximately 50 % of the total study time). A new multivariate approach for the assessment of the patient steady-state during general anesthesia was developed. The proposed wavelet based multivariate index responds adequately to different noxious stimuli, and attenuation provided by the analgesic in a dose-dependent manner for each stimulus analyzed in this study.The first author was supported by a scholarship from the Portuguese Foundation for Science and Technology (FCT SFRH/BD/35879/2007). The authors would also like to acknowledge the support of UISPA—System Integration and Process Automation Unit—Part of the LAETA (Associated Laboratory of Energy,
Transports and Aeronautics) a I&D Unit of the Foundation for Science and Technology (FCT), Portugal. FCT support under project PEst-OE/EME/LA0022/2013.info:eu-repo/semantics/publishedVersio
- …
