5 research outputs found

    Effect of high-pressure torsion on microstructure, mechanical properties and corrosion resistance of cast pure Mg

    Get PDF
    © 2018, The Author(s). High-pressure torsion (HPT) processing was applied to cast pure magnesium, and the effects of the deformation on the microstructure, hardness, tensile properties and corrosion resistance were evaluated. The microstructures of the processed samples were examined by electron backscatter diffraction, and the mechanical properties were determined by Vickers hardness and tensile testing. The corrosion resistance was studied using electrochemical impedance spectroscopy in a 3.5% NaCl solution. The results show that HPT processing effectively refines the grain size of Mg from millimeters in the cast structure to a few micrometers after processing and also creates a basal texture on the surface. It was found that one or five turns of HPT produced no significant difference in the grain size of the processed Mg and the hardness was a maximum after one turn due to recovery in some grains. Measurements showed that the yield strength of the cast Mg increased by about seven times whereas the corrosion resistance was not significantly affected by the HPT processing

    The effect of cyclic torsion on the dislocation structure of drawn mild steel

    No full text
    Cold forming is usually associated with the "work hardening" of the material being formed. The work hardening behavior of metals subject to complex processing paths is different from that in monotonic deformation. The results show that, after some initial hardening, there is a possibility that further deformation will cause softening in the material ("work softening"). Recent work showed that cyclic torsion applied to drawn products causes changes in the subsequent tensile behavior of low carbon steel, and that the effect will depend on the previous "history" of the material. For annealed samples, the cyclic torsion leads to an increase in the yield strength, but does not affect the tensile strength and elongation. For the case of previously drawn bars, the cyclic deformation caused a decrease in the yield and tensile strength and an increase in the total elongation. The present paper discusses the dislocation structure changes associated with different strain paths in mild steel
    corecore