11 research outputs found

    HLA-C expression levels define permissible mismatches in hematopoietic cell transplantation

    No full text
    Life-threatening graft-versus-host disease (GVHD) limits the use of HLA-C-mismatched unrelated donors in transplantation. Clinicians lack criteria for donor selection when HLA-C-mismatched donors are a patient's only option for cure. We examined the role for HLA-C expression levels to identify permissible HLA-C mismatches. The median fluorescence intensity, a proxy of HLA-C expression, was assigned to each HLA-C allotype in 1975 patients and their HLA-C-mismatched unrelated transplant donors. The association of outcome with the level of expression of patients' and donors' HLA-C allotypes was evaluated in multivariable models. Increasing expression level of the patient's mismatched HLA-C allotype was associated with increased risks of grades III to IV acute GVHD, nonrelapse mortality, and mortality. Increasing expression level among HLA-C mismatches with residue 116 or residue 77/80 mismatching was associated with increased nonrelapse mortality. The immunogenicity of HLA-C mismatches in unrelated donor transplantation is influenced by the expression level of the patient's mismatched HLA-C allotype. HLA-C expression levels provide new information on mismatches that should be avoided and extend understanding of HLA-C-mediated immune responses in human disease

    Matching for the nonconventional MHC-I MICA gene significantly reduces the incidence of acute and chronic GVHD

    No full text
    Graft-versus-host disease (GVHD) is among the most challenging complications in unrelated donor hematopoietic cell transplantation (HCT). The highly polymorphic MHC class I chain-related gene A, MICA, encodes a stress-induced glycoprotein expressed primarily on epithelia. MICA interacts with the invariant activating receptor NKG2D, expressed by cytotoxic lymphocytes, and is located in the MHC, next to HLA-B. Hence, MICA has the requisite attributes of a bona fide transplantation antigen. Using high-resolution sequence-based genotyping of MICA, we retrospectively analyzed the clinical effect of MICA mismatches in a multicenter cohort of 922 unrelated donor HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 10/10 allele-matched HCT pairs. Among the 922 pairs, 113 (12.3%) were mismatched in MICA. MICA mismatches were significantly associated with an increased incidence of grade III-IV acute GVHD (hazard ratio [HR], 1.83; 95% confidence interval [CI], 1.50-2.23; P < .001), chronic GVHD (HR, 1.50; 95% CI

    Matching for the non-conventional MHC-I MICA gene significantly reduces the incidence of acute and chronic GVHD

    No full text
    Graft-versus-host disease (GVHD) is among the most challenging complications in unrelated donor hematopoietic cell transplantation (HCT). The highly polymorphic "MHC class I chain-related gene A", MICA, encodes a stress-induced glycoprotein expressed primarily on epithelia. MICA interacts with the invariant activating receptor NKG2D; expressed by cytotoxic lymphocytes. The MICA gene is located in the MHC, next to HLA-B; hence MICA has the requisite attributes of a bona fide transplantation antigen. Using high-resolution sequence-based genotyping of MICA, we retrospectively analyzed the clinical impact of MICA mismatches in a multicenter cohort of 922 unrelated donor HLA-A, -B, -C, -DRB1, and -DQB1 10/10 allele-matched HCT. Among the 922 pairs, 113 (12.3%) were mismatched in MICA MICA mismatches were significantly associated with an increased incidence of grade III-IV acute GVHD (HR, 1.83; 95% CI, 1.50 to 2.23; P<0.001), chronic GVHD (HR, 1.50; 95% CI, 1.45 to 1.55; P<0.001) and non-relapse mortality (HR, 1.35; 95% CI, 1.24 to 1.46; P<0.001). The increased risk of GVHD was mirrored by a lower risk of relapse (HR, 0.50; 95% CI, 0.43 to 0.59; P<0.001), indicating a possible graft-versus-leukemia effect. In conclusion, when possible, selecting a MICA-matched donor significantly influences key clinical outcomes of HCT in which a marked reduction of GVHD is paramount. The tight linkage disequilibrium between MICA and HLA-B renders identifying a MICA-matched donor readily feasible in clinical practice

    The EKiTE network (epidemiology in kidney transplantation - a European validated database): an initiative epidemiological and translational European collaborative research

    No full text
    BACKGROUND: Kidney transplantation is considered to be the treatment of choice for people with end-stage renal disease (ESRD). However, due to the shortage of available organs and the increase in the ESRD prevalence in Europe, it is essential to improve transplantation outcomes by studying the related prognostic factors. Today, there is no European registry collecting data to perform such clinical epidemiology studies. MAIN BODY: Entitled EKiTE, for European cohort for Kidney Transplantation Epidemiology, this prospective and multicentric cohort includes patients from Spanish (Barcelona), Belgian (Leuven), Norwegian (Oslo) and French (Paris Necker, Lyon, Nantes, Nancy, Montpellier, Nice and Paris Saint Louis) transplantation centers and currently contains 13,394 adult recipients of kidney (only) transplantation from 2005 and updated annually. A large set of parameters collected from transplantation until graft failure or death with numbers of post-transplantation outcomes. The long-term follow-up and the collected data enable a wide range of possible survival and longitudinal analyses. CONCLUSION: EKiTE is a multicentric cohort aiming to better assess the natural history of the ESRD in European kidney transplant recipients and perform benchmarking of clinical practices. The data are available for clinical epidemiology studies and open for external investigators upon request to the scientific council. Short-term perspectives are to extend EKITE network to other European countries and collect additional parameters in respect of the common thesaurus.status: publishe

    Quality control project of NGS HLA genotyping for the 17th International HLA and Immunogenetics Workshop

    No full text
    The 17th International HLA and Immunogenetics Workshop (IHIW) organizers conducted a Pilot Study (PS) in which 13 laboratories (15 groups) participated to assess the performance of the various sequencing library preparation protocols, NGS platforms and software in use prior to the workshop. The organizers sent 50 cell lines to each of the 15 groups, scored the 15 independently generated sets of NGS HLA genotyping data, and generated "consensus" HLA genotypes for each of the 50 cell lines. Proficiency Testing (PT) was subsequently organized using four sets of 24 cell lines, selected from 48 of 50 PS cell lines, to validate the quality of NGS HLA typing data from the 34 participating IHIW laboratories. Completion of the PT program with a minimum score of 95% concordance at the HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 loci satisfied the requirements to submit NGS HLA typing data for the 17th IHIW projects. Together, these PS and PT efforts constituted the 17th IHIW Quality Control project. Overall PT concordance rates for HLA-A, HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRB1, HLA-DRB3, HLA-DRB4 and HLA-DRB5 were 98.1%, 97.0% and 98.1%, 99.0%, 98.6%, 98.8%, 97.6%, 96.0%, 99.1%, 90.0% and 91.7%, respectively. Across all loci, the majority of the discordance was due to allele dropout. The high cost of NGS HLA genotyping per experiment likely prevented the retyping of initially failed HLA loci. Despite the high HLA genotype concordance rates of the software, there remains room for improvement in the assembly of more accurate consensus DNA sequences by NGS HLA genotyping software

    Quality control project of NGS HLA genotyping for the 17th International HLA and Immunogenetics Workshop

    No full text
    The 17th International HLA and Immunogenetics Workshop (IHIW) organizers conducted a Pilot Study (PS) in which 13 laboratories (15 groups) participated to assess the performance of the various sequencing library preparation protocols, NGS platforms and software in use prior to the workshop. The organizers sent 50 cell lines to each of the 15 groups, scored the 15 independently generated sets of NGS HLA genotyping data, and generated "consensus" HLA genotypes for each of the 50 cell lines. Proficiency Testing (PT) was subsequently organized using four sets of 24 cell lines, selected from 48 of 50 PS cell lines, to validate the quality of NGS HLA typing data from the 34 participating IHIW laboratories. Completion of the PT program with a minimum score of 95% concordance at the HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 loci satisfied the requirements to submit NGS HLA typing data for the 17th IHIW projects. Together, these PS and PT efforts constituted the 17th IHIW Quality Control project. Overall PT concordance rates for HLA-A, HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRB1, HLA-DRB3, HLA-DRB4 and HLA-DRB5 were 98.1%, 97.0% and 98.1%, 99.0%, 98.6%, 98.8%, 97.6%, 96.0%, 99.1%, 90.0% and 91.7%, respectively. Across all loci, the majority of the discordance was due to allele dropout. The high cost of NGS HLA genotyping per experiment likely prevented the retyping of initially failed HLA loci. Despite the high HLA genotype concordance rates of the software, there remains room for improvement in the assembly of more accurate consensus DNA sequences by NGS HLA genotyping software
    corecore