17 research outputs found

    Therapeutic Potential of EWSR1-FLI1 Inactivation by CRISPR/Cas9 in Ewing Sarcoma.

    Get PDF
    Ewing sarcoma is an aggressive bone cancer affecting children and young adults. The main molecular hallmark of Ewing sarcoma are chromosomal translocations that produce chimeric oncogenic transcription factors, the most frequent of which is the aberrant transcription factor EWSR1-FLI1. Because this is the principal oncogenic driver of Ewing sarcoma, its inactivation should be the best therapeutic strategy to block tumor growth. In this study, we genetically inactivated EWSR1-FLI1 using CRISPR-Cas9 technology in order to cause permanent gene inactivation. We found that gene editing at the exon 9 of FLI1 was able to block cell proliferation drastically and induce senescence massively in the well-studied Ewing sarcoma cell line A673. In comparison with an extensively used cellular model of EWSR1-FLI1 knockdown (A673/TR/shEF), genetic inactivation was more effective, particularly in its capability to block cell proliferation. In summary, genetic inactivation of EWSR1-FLI1 in A673 Ewing sarcoma cells blocks cell proliferation and induces a senescence phenotype that could be exploited therapeutically. Although efficient and specific in vivo CRISPR-Cas9 editing still presents many challenges today, our data suggest that complete inactivation of EWSR1-FLI1 at the cell level should be considered a therapeutic approach to develop in the future.This research was funded by the Instituto de Salud Carlos III, grant numbers PI20CIII/00020, DTS18CIII/00005, PI16CIII/00026; Asociación Pablo Ugarte, grant numbers TRPV205/18, TPI-M 1149/13; Asociación Candela Riera, Asociación Todos Somos Iván & Fundación Sonrisa de Alex, grant numbers TVP333-19, TVP-1324/15; ASION, grant number TVP141/17, and by the Spanish Center for Biomedical Network Research on Rare Diseases (CIBERER, ER19P5AC728/2021, grant to M.M.), and by the Regional Government of Madrid (CAM, B2017/BMD3721, grant to M.A.M.-P.). R.M.M-F.d.M. was supported by a grant from the Spanish Center for Biomedical Network Research on Rare Diseases (CIBERER).S

    CD44 modulates cell migration and invasion in Ewing sarcoma cells

    Get PDF
    The chimeric EWSR1::FLI1 transcription factor is the main oncogenic event in Ewing sarcoma. Recently, it has been proposed that EWSR1::FLI1 levels can fluctuate in Ewing sarcoma cells, giving rise to two cell populations. EWSR1::FLI1low cells present a migratory and invasive phenotype, while EWSR1::FLI1high cells are more proliferative. In this work, we described how the CD44 standard isoform (CD44s), a transmembrane protein involved in cell adhesion and migration, is overexpressed in the EWSR1::FLI1low phenotype. The functional characterization of CD44s (proliferation, clonogenicity, migration, and invasion ability) was performed in three doxycycline-inducible Ewing sarcoma cell models (A673, MHH-ES1, and CADO-ES1). As a result, CD44s expression reduced cell proliferation in all the cell lines tested without affecting clonogenicity. Additionally, CD44s increased cell migration in A673 and MHH-ES1, without effects in CADO-ES1. As hyaluronan is the main ligand of CD44s, its effect on migration ability was also assessed, showing that high molecular weight hyaluronic acid (HMW-HA) blocked cell migration while low molecular weight hyaluronic acid (LMW-HA) increased it. Invasion ability was correlated with CD44 expression in A673 and MHH-ES1 cell lines. CD44s, upregulated upon EWSR1::FLI1 knockdown, regulates cell migration and invasion in Ewing sarcoma cells.: This project was funded by Instituto de Salud Carlos III, grant numbers PI20CIII/00020, DTS18CIII/00005, Asociación Pablo Ugarte, grant numbers TRPV205/18; Asociación Candela Riera, Asociación Todos Somos Iván & Fundación Sonrisa de Alex, grant numbers TVP333-19, TVP-1324/15; ASION, grant number TVP141/17. Enrique Fernández-Tabanera is supported by Asociación Candela Riera, Asociación Todos Somos Iván & Fundación Sonrisa de Alex, Saint T. Cervera is supported by Asociación Pablo Ugarte and Raquel M. Melero is supported by a CIBERER contract

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    The Transcription Factor FEZF1, a Direct Target of EWSR1-FLI1 in Ewing Sarcoma Cells, Regulates the Expression of Neural-Specific Genes.

    Get PDF
    Ewing sarcoma is a rare pediatric tumor characterized by chromosomal translocations that give rise to aberrant chimeric transcription factors (e.g., EWSR1-FLI1). EWSR1-FLI1 promotes a specific cellular transcriptional program. Therefore, the study of EWSR1-FLI1 target genes is important to identify critical pathways involved in Ewing sarcoma tumorigenesis. In this work, we focused on the transcription factors regulated by EWSR1-FLI1 in Ewing sarcoma. Transcriptomic analysis of the Ewing sarcoma cell line A673 indicated that one of the genes more strongly upregulated by EWSR1-FLI1 was FEZF1 (FEZ family zinc finger protein 1), a transcriptional repressor involved in neural cell identity. The functional characterization of FEZF1 was performed in three Ewing sarcoma cell lines (A673, SK-N-MC, SK-ES-1) through an shRNA-directed silencing approach. FEZF1 knockdown inhibited clonogenicity and cell proliferation. Finally, the analysis of the FEZF1-dependent expression profile in A673 cells showed several neural genes regulated by FEZF1 and concomitantly regulated by EWSR1-FLI1. In summary, FEZF1 is transcriptionally regulated by EWSR1-FLI1 in Ewing sarcoma cells and is involved in the regulation of neural-specific genes, which could explain the neural-like phenotype observed in several Ewing sarcoma tumors and cell lines.This research was funded by the Instituto de Salud Carlos III, grant numbers PI20CIII/00020, DTS18CIII/00005, PI16CIII/00026; Asociacion Pablo Ugarte, grant numbers TRPV205/18, TPI-M 1149/13; Asociación Candela Riera, Asociación Todos Somos Iván & Fundación Sonrisa de Alex, grant numbers TVP333-19, TVP-1324/15; ASION, grant number TVP141/17. R.M.M-FdM is supported for a grant of the Spanish Center for Biomedical Network Research on Rare Diseases (CIBERER). The laboratory of T.G.P.G. is supported by the Barbara and Wilfried Mohr Foundation.S

    Selectivity of Protein Ion Channels and the Role of Buried Charges. Analytical Solutions, Numerical Calculations, and MD Simulations

    No full text
    The preference of large protein ion channels for cations or anions is mainly determined by the electrostatic interactions of mobile ions with charged residues of the protein. Here we discuss the widely spread paradigm that the charges determining the channel selectivity are only those that can be considered solvent-accessible because of their location near the permeation pathways of ions and water molecules. Theoretical predictions for the electric potential and average ion densities inside the pore are presented using several approaches of increasing resolution: from analytical and numerical solutions of electrostatic equations in a model channel up to all-atom molecular dynamics simulations and continuum electrostatic calculations performed in a particular biological channel, the bacterial porin OmpF. The results highlight the role of protein dieletric properties and the importance of the initial choice of the residue ionization states in the understanding of the molecular basis of large channel selectivity irrespective of the level of resolution of the computational approach used.We acknowledge support from the Spanish Ministry of Economy and Competitiveness (MINECO Project FIS2013- 40473-P), Generalitat Valenciana (Prometeo 2012/069), and Fundacio ́ Caixa Castello ́ -Bancaixa (Projects No. P1-1B2012-03 and P1-1B2012-16)

    Glutathione S Transferases Polymorphisms Are Independent Prognostic Factors in Lupus Nephritis Treated with Cyclophosphamide

    No full text
    OBJECTIVE:To investigate association between genetic polymorphisms of GST, CYP and renal outcome or occurrence of adverse drug reactions (ADRs) in lupus nephritis (LN) treated with cyclophosphamide (CYC). CYC, as a pro-drug, requires bioactivation through multiple hepatic cytochrome P450s and glutathione S transferases (GST). METHODS:We carried out a multicentric retrospective study including 70 patients with proliferative LN treated with CYC. Patients were genotyped for polymorphisms of the CYP2B6, CYP2C19, GSTP1, GSTM1 and GSTT1 genes. Complete remission (CR) was defined as proteinuria ≤0.33g/day and serum creatinine ≤124 µmol/l. Partial remission (PR) was defined as proteinuria ≤1.5g/day with a 50% decrease of the baseline proteinuria value and serum creatinine no greater than 25% above baseline. RESULTS:Most patients were women (84%) and 77% were Caucasian. The mean age at LN diagnosis was 41 ± 10 years. The frequency of patients carrying the GST null genotype GSTT1-, GSTM1-, and the Ile→105Val GSTP1 genotype were respectively 38%, 60% and 44%. In multivariate analysis, the Ile→105Val GSTP1 genotype was an independent factor of poor renal outcome (achievement of CR or PR) (OR = 5.01 95% CI [1.02-24.51]) and the sole factor that influenced occurrence of ADRs was the GSTM1 null genotype (OR = 3.34 95% CI [1.064-10.58]). No association between polymorphisms of cytochrome P450s gene and efficacy or ADRs was observed. CONCLUSION:This study suggests that GST polymorphisms highly impact renal outcome and occurrence of ADRs related to CYC in LN patients

    Defining the Electronic and Geometric Structure of One-Electron Oxidized Copper−Bis-phenoxide Complexes

    No full text

    Cannabis Use and Reduced Risk of Insulin Resistance in HIV-HCV Infected Patients: A Longitudinal Analysis (ANRS CO13 HEPAVIH)

    No full text
    International audienceDiabetes and insulin resistance (IR) is common in human immunodeficiency virus-hepatitis C virus (HIV-HCV)-coinfected patients, a population also concerned with elevated cannabis use. Cannabis has been associated with reduced IR risk in some population-based surveys. We determined whether cannabis use was consistently associated with reduced IR risk in HEPAVIH, a French nationwide cohort of HIV-HCV-coinfected patients.Methods: HEPAVIH medical and sociobehavioral data were collected (using annual self-administered questionnaires). We used 60 months of follow-up data for patients with at least 1 medical visit where IR (using homeostatic model assessment of insulin resistance [HOMA-IR]) and cannabis use were assessed. A mixed logistic regression model was used to evaluate the association between IR risk (HOMA-IR > 2.77) and cannabis use (occasional, regular, daily).Results: Among the 703 patients included in the study (1287 visits), 323 (46%) had HOMA-IR > 2.77 for at least 1 follow-up visit and 319 (45%) reported cannabis use in the 6 months before the first available visit. Cannabis users (irrespective of frequency) were less likely to have HOMA-IR > 2.77 (odds ratio [95% confidence interval], 0.4 [.2-.5]) after adjustment for known correlates/confounders. Two sensitivity analyses with HOMA-IR values as a continuous variable and a cutoff value of 3.8 confirmed the association between reduced IR risk and cannabis use.Conclusions: Cannabis use is associated with a lower IR risk in HIV-HCV-coinfected patients. The benefits of cannabis-based pharmacotherapies for patients concerned with increased risk of IR and diabetes need to be evaluated in clinical research and practice
    corecore