404 research outputs found

    External bulb variable volume maser

    Get PDF
    A maser functioning as a frequency standard stable to one part in 10 to the 14th power includes a variable volume, constant surface area storage bulb having a fixed volume portion located in a resonant cavity from which the frequency standard is derived. A variable volume portion of the bulb, exterior to the resonant cavity, has a maximum volume on the same order of magnitude as the fixed volume bulb portion. The cavity has a length to radius ratio of at least 3:1 so that the operation is attained without the need for a feedback loop. A baffle plate, between the fixed and variable volume bulb portions, includes apertures for enabling hydrogen atoms to pass between the two bulb portions and is an electromagnetic shield that prevents coupling of the electromagnetic field of the cavity into the variable volume bulb portion

    Nanosecond time transfer via shuttle laser ranging experiment

    Get PDF
    A method is described to use a proposed shuttle laser ranging experiment to transfer time with nanosecond precision. All that need be added to the original experiment are low cost ground stations and an atomic clock on the shuttle. It is shown that global time transfer can be accomplished with 1 ns precision and transfer up to distances of 2000 km can be accomplished with better than 100 ps precision

    Coupling of a single-photon emitter in nanodiamond to surface plasmons of a nanochannel-enclosed silver nanowire

    Full text link
    A finite element method is applied to study the coupling between a nitrogen vacancy (NV) single photon emitter in nanodiamond and surface plasmons in a silver nanowire embedded in an alumina nanochannel template. We investigate the effective parameters in the coupled system and present detailed optimization for the maximum transmitted power at a selected optical frequency (650 nm). The studied parameters include nanowire length, nanowire diameter, distance between the dipole and the nanowire, orientation of the emitter and refractive index of the surrounding. It is found that the diameter of the nanowire has a strong influence on the propagation of the surface plasmon polaritons and emission power from the bottom and top endings of the nanowire. © 2014 Optical Society of America

    Heatring - Smart Investigation of Temperature Impact On Integrated Circuit Devices

    Get PDF
    To investigate the electrical on-chip-transistor behavior at different temperatures usually the transistor area on the wafer is heated by external heat sources to operate at a specific temperature. To avoid using external heat sources a heatring structure was developed which directly controls the temperature of the investigated transistor area on the wafer, guaranteeing very fast warming up and cooling off duration times. Testing the heatring functionality was performed by electro-thermal simulations, the results of which were verified by measurements. Keywords : heatring, electro-thermal simulatio

    A graphene field-effect transistor as a molecule-specific probe of DNA nucleobases

    Get PDF
    © 2015 Macmillan Publishers Limited. All rights reserved. Fast and reliable DNA sequencing is a long-standing target in biomedical research. Recent advances in graphene-based electrical sensors have demonstrated their unprecedented sensitivity to adsorbed molecules, which holds great promise for label-free DNA sequencing technology. To date, the proposed sequencing approaches rely on the ability of graphene electric devices to probe molecular-specific interactions with a graphene surface. Here we experimentally demonstrate the use of graphene field-effect transistors (GFETs) as probes of the presence of a layer of individual DNA nucleobases adsorbed on the graphene surface. We show that GFETs are able to measure distinct coverage-dependent conductance signatures upon adsorption of the four different DNA nucleobases; a result that can be attributed to the formation of an interface dipole field. Comparison between experimental GFET results and synchrotron-based material analysis allowed prediction of the ultimate device sensitivity, and assessment of the feasibility of single nucleobase sensing with graphene

    DNM1 encephalopathy: A new disease of vesicle fission.

    Get PDF
    ObjectiveTo evaluate the phenotypic spectrum caused by mutations in dynamin 1 (DNM1), encoding the presynaptic protein DNM1, and to investigate possible genotype-phenotype correlations and predicted functional consequences based on structural modeling.MethodsWe reviewed phenotypic data of 21 patients (7 previously published) with DNM1 mutations. We compared mutation data to known functional data and undertook biomolecular modeling to assess the effect of the mutations on protein function.ResultsWe identified 19 patients with de novo mutations in DNM1 and a sibling pair who had an inherited mutation from a mosaic parent. Seven patients (33.3%) carried the recurrent p.Arg237Trp mutation. A common phenotype emerged that included severe to profound intellectual disability and muscular hypotonia in all patients and an epilepsy characterized by infantile spasms in 16 of 21 patients, frequently evolving into Lennox-Gastaut syndrome. Two patients had profound global developmental delay without seizures. In addition, we describe a single patient with normal development before the onset of a catastrophic epilepsy, consistent with febrile infection-related epilepsy syndrome at 4 years. All mutations cluster within the GTPase or middle domains, and structural modeling and existing functional data suggest a dominant-negative effect on DMN1 function.ConclusionsThe phenotypic spectrum of DNM1-related encephalopathy is relatively homogeneous, in contrast to many other genetic epilepsies. Up to one-third of patients carry the recurrent p.Arg237Trp variant, which is now one of the most common recurrent variants in epileptic encephalopathies identified to date. Given the predicted dominant-negative mechanism of this mutation, this variant presents a prime target for therapeutic intervention

    A novel aromatic oil compound inhibits microbial overgrowth on feet: a case study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Athlete's Foot (Tinea pedis) is a form of ringworm associated with highly contagious yeast-fungi colonies, although they look like bacteria. Foot bacteria overgrowth produces a harmless pungent odor, however, uncontrolled proliferation of yeast-fungi produces small vesicles, fissures, scaling, and maceration with eroded areas between the toes and the plantar surface of the foot, resulting in intense itching, blisters, and cracking. Painful microbial foot infection may prevent athletic participation. Keeping the feet clean and dry with the toenails trimmed reduces the incidence of skin disease of the feet. Wearing sandals in locker and shower rooms prevents intimate contact with the infecting organisms and alleviates most foot-sensitive infections. Enclosing feet in socks and shoes generates a moisture-rich environment that stimulates overgrowth of pungent both aerobic bacteria and infectious yeast-fungi. Suppression of microbial growth may be accomplished by exposing the feet to air to enhance evaporation to reduce moistures' growth-stimulating effect and is often neglected. There is an association between yeast-fungi overgrowths and disabling foot infections. Potent agents virtually exterminate some microbial growth, but the inevitable presence of infection under the nails predicts future infection. Topical antibiotics present a potent approach with the ideal agent being one that removes moisture producing antibacterial-antifungal activity. Severe infection may require costly prescription drugs, salves, and repeated treatment.</p> <p>Methods</p> <p>A 63-y female volunteered to enclose feet in shoes and socks for 48 hours. Aerobic bacteria and yeast-fungi counts were determined by swab sample incubation technique (1) after 48-hours feet enclosure, (2) after washing feet, and (3) after 8-hours socks-shoes exposure to a aromatic oil powder-compound consisting of <it>arrowroot, baking soda, basil oil, tea tree oil, sage oil, and clove oil</it>.</p> <p>Conclusion</p> <p>Application of this novel compound to the external surfaces of feet completely inhibited both aerobic bacteria and yeast-fungi-mold proliferation for 8-hours in spite of being in an enclosed environment compatible to microbial proliferation. Whether topical application of this compound prevents microbial infections in larger populations is not known. This calls for more research collected from subjects exposed to elements that may increase the risk of microbial-induced foot diseases.</p

    International consensus recommendations for management of new onset refractory status epilepticus including febrile infection-related epilepsy syndrome: Statements and supporting evidence

    Get PDF
    Objective: This study was undertaken to develop consensus-based recommendations for the management of adult and pediatric patients with new onset refractory status epilepticus (NORSE)/febrile infection-related epilepsy syndrome (FIRES) based on best evidence and experience. Methods: The Delphi methodology was followed. A facilitator group of nine experts was established, who defined the scope, users, and suggestions for recommendations. Following a review of the current literature, recommendation statements concerning diagnosis, treatment, and research directions were generated, which were then rated on a scale of 1 (strongly disagree) to 9 (strongly agree) by a panel of 48 experts in the field. Consensus that a statement was appropriate was reached if the median score was ≥7 and inappropriate if the median score was ≤3. The analysis of evidence was mapped to the results of each statement included in the Delphi survey. Results: Overall, 85 recommendation statements achieved consensus. The recommendations are divided into five sections: (1) disease characteristics; (2) diagnostic testing and sampling; (3) acute treatment; (4) treatment in the postacute phase; and (5) research, registries, and future directions in NORSE/FIRES. The detailed results and discussion of all 85 statements are outlined herein. A corresponding summary of findings and practical flowsheets are presented in a companion article. Significance: This detailed analysis offers insight into the supporting evidence and the current gaps in the literature that are associated with expert consensus statements related to NORSE/FIRES. The recommendations generated by this consensus can be used as a guide for the diagnosis, evaluation, and management of patients with NORSE/FIRES, and for planning of future research
    • …
    corecore