177 research outputs found

    Molecular Gas, Dust and Star Formation in Galaxies: II. Dust properties and scalings in \sim\ 1600 nearby galaxies

    Full text link
    We aim to characterize the relationship between dust properties. We also aim to provide equations to estimate accurate dust properties from limited observational datasets. We assemble a sample of 1,630 nearby (z<0.1) galaxies-over a large range of Mstar, SFR - with multi-wavelength observations available from wise, iras, planck and/or SCUBA. The characterization of dust emission comes from SED fitting using Draine & Li dust models, which we parametrize using two components (warm and cold ). The subsample of these galaxies with global measurements of CO and/or HI are used to explore the molecular and/or atomic gas content of the galaxies. The total Lir, Mdust and dust temperature of the cold component (Tc) form a plane that we refer to as the dust plane. A galaxy's sSFR drives its position on the dust plane: starburst galaxies show higher Lir, Mdust and Tc compared to Main Sequence and passive galaxies. Starburst galaxies also show higher specific Mdust (Mdust/Mstar) and specific Mgas (Mgas/Mstar). The Mdust is more closely correlated with the total Mgas (atomic plus molecular) than with the individual components. Our multi wavelength data allows us to define several equations to estimate Lir, Mdust and Tc from one or two monochromatic luminosities in the infrared and/or sub-millimeter. We estimate the dust mass and infrared luminosity from a single monochromatic luminosity within the R-J tail of the dust emission, with errors of 0.12 and 0.20dex, respectively. These errors are reduced to 0.05 and 0.10 dex, respectively, if the Tc is used. The Mdust is correlated with the total Mism (Mism \propto Mdust^0.7). For galaxies with Mstar 8.5<log(Mstar/Msun) < 11.9, the conversion factor \alpha_850mum shows a large scatter (rms=0.29dex). The SF mode of a galaxy shows a correlation with both the Mgass and Mdust: high Mdust/Mstar galaxies are gas-rich and show the highest SFRs.Comment: 24 pages, 28 figures, 6 tables, Accepted for publication in A&

    Technical standardization of MIS management of children with pilonidal sinus disease using pediatric endoscopic pilonidal sinus treatment (PEPSiT) and laser epilation

    Get PDF
    This study aimed to standardize the technique of pediatric endoscopic pilonidal sinus treatment (PEPSiT) associated with laser epilation. METHODS: All pediatric patients presenting with acute or chronic pilonidal sinus disease (PSD) who underwent PEPSiT in our institution over a 36-month period (July 2015-July 2018), were included in the study. Pre- and postoperative management, recurrence rate, postoperative pain, hospital stay, analgesic requirements, and patient satisfaction levels were evaluated. RESULTS: A total of 59 patients (23 girls and 36 boys) underwent PEPSiT during the study period. Ten/59 patients (16.9%) had recurrent PSD after open repair, and 4/59 (6.7%) presented a concomitant pilonidal cyst. All children underwent laser epilation pre- and postoperatively over the last 15 months. The average length of surgery was 27.5 min (range 20-45). The average pain score during the first 48 postoperative hours was 2.7 (range 2-5), and the average analgesic requirement was 20 h (range 16-24). The average hospitalization was 22.4 h (range 18-36). At 1 month postoperatively, external openings were healed in all patients. During follow-up, 1 recurrence (1.6%) was recorded and successfully re-treated with PEPSiT. CONCLUSIONS: We believe that PEPSiT represents the technique of choice for treatment of PSD in the pediatric population. It is crucial to standardize the technique consisting of pre- and postoperative laser epilation, PEPSiT, and accurate postoperative wound management with eosin and sulfadiazine spray

    Galaxy pre-processing in substructures around z∼\sim0.4 galaxy clusters

    Get PDF
    We present a detailed analysis of galaxy colours in two galaxy clusters at \mbox{z ∼\sim 0.4}, \mbox{MACS J0416.1-2403} and \mbox{MACS J1206.2-0847}, drawn from the CLASH-VLT survey, to investigate the role of pre-processing in the quenching of star formation. We estimate the fractions of red and blue galaxies within the main cluster and the detected substructures and study the trends of the colour fractions as a function of the projected distance from the cluster and substructure centres. Our results show that the colours of cluster and substructure members have consistent spatial distributions. In particular, the colour fractions of galaxies inside substructures follow the same spatial trends observed in the main clusters. Additionally, we find that at large cluster-centric distances \mbox{(r≥r200r \geq r_{200})} the fraction of blue galaxies in both the main clusters and in the substructures is always lower than the average fraction of UVJ-selected star-forming galaxies in the field as measured in the COSMOS/UltraVista data set. We finally estimate environmental quenching efficiencies in the clusters and in the substructures and find that at large distances from the cluster centres, the quenching efficiency of substructures becomes comparable to the quenching efficiency of clusters. Our results suggest that pre-processing plays a significant role in the formation and evolution of passive galaxies in clusters at low redshifts.Comment: Accepted for publication in MNRAS. 28 pages, 14 figures, 20 table

    The Evolution of Environmental Quenching Timescales to z∼1.6z\sim1.6

    Get PDF
    Using a sample of 4 galaxy clusters at 1.35<z<1.651.35 < z < 1.65 and 10 galaxy clusters at 0.85<z<1.350.85 < z < 1.35, we measure the environmental quenching timescale, tQt_Q, corresponding to the time required after a galaxy is accreted by a cluster for it to fully cease star formation. Cluster members are selected by a photometric-redshift criterion, and categorized as star-forming, quiescent, or intermediate according to their dust-corrected rest-frame colors and magnitudes. We employ a "delayed-then-rapid" quenching model that relates a simulated cluster mass accretion rate to the observed numbers of each type of galaxy in the cluster to constrain tQt_Q. For galaxies of mass M∗≳1010.5 M⊙M_* \gtrsim 10^{10.5}~ \mathrm{M}_\odot, we find a quenching timescale of tQ=t_Q= 1.24 Gyr in the z∼1.5z\sim1.5 cluster sample, and tQ=t_Q= 1.50 Gyr at z∼1z\sim1. Using values drawn from the literature, we compare the redshift evolution of tQt_Q to timescales predicted for different physical quenching mechanisms. We find tQt_Q to depend on host halo mass such that quenching occurs over faster timescales in clusters relative to groups, suggesting that properties of the host halo are responsible for quenching high-mass galaxies. Between z=0z=0 and z=1.5z=1.5, we find that tQt_Q evolves faster than the molecular gas depletion timescale and slower than an SFR-outflow timescale, but is consistent with the evolution of the dynamical time. This suggests that environmental quenching in these galaxies is driven by the motion of satellites relative to the cluster environment, although due to uncertainties in the atomic gas budget at high redshift, we cannot rule out quenching due to simple gas depletion

    The importance of major mergers in the build up of stellar mass in brightest cluster galaxies at z=1

    Get PDF
    Recent independent results from numerical simulations and observations have shown that brightest cluster galaxies (BCGs) have increased their stellar mass by a factor of almost two between z~0.9 and z~0.2. The numerical simulations further suggest that more than half this mass is accreted through major mergers. Using a sample of 18 distant galaxy clusters with over 600 spectroscopically confirmed cluster members between them, we search for observational evidence that major mergers do play a significant role. We find a major merger rate of 0.38 +/- 0.14 mergers per Gyr at z~1. While the uncertainties, which stem from the small size of our sample, are relatively large, our rate is consistent with the results that are derived from numerical simulations. If we assume that this rate continues to the present day and that half of the mass of the companion is accreted onto the BCG during these mergers, then we find that this rate can explain the growth in the stellar mass of the BCGs that is observed and predicted by simulations. Major mergers therefore appear to be playing an important role, perhaps even the dominant one, in the build up of stellar mass in these extraordinary galaxies.Comment: 15 pages, 6 figures, accepted for publication in MNRAS. Reduced data will be made available through the ESO archiv

    The WAGGS project -- III. Discrepant mass-to-light ratios of Galactic globular clusters at high metallicity

    Get PDF
    Observed mass-to-light ratios (M/L) of metal-rich globular clusters (GCs) disagree with theoretical predictions. This discrepancy is of fundamental importance since stellar population models provide the stellar masses that underpin most of extragalactic astronomy, near and far. We have derived radial velocities for 1,622 stars located in the centres of 59 Milky Way GCs - twelve of which have no previous kinematic information - using integral-field unit data from the WAGGS project. Using N-body models, we then determine dynamical masses and M/L ratios for the studied clusters. Our sample includes NGC 6528 and NGC 6553, which extend the metallicity range of GCs with measured M/L up to [Fe/H] ~ -0.1 dex. We find that metal-rich clusters have M/L more than two times lower than what is predicted by simple stellar population models. This confirms that the discrepant M/L-[Fe/H] relation remains a serious concern. We explore how our findings relate to previous observations, and the potential causes for the divergence, which we conclude is most likely due to dynamical effects

    JAK/Stat5-mediated subtype-specific lymphocyte antigen 6 complex, locus G6D (LY6G6D) expression drives mismatch repair proficient colorectal cancer

    Get PDF
    Background: Human microsatellite-stable (MSS) colorectal cancers (CRCs) are immunologically "cold" tumour subtypes characterized by reduced immune cytotoxicity. The molecular linkages between immune-resistance and human MSS CRC is not clear. Methods: We used transcriptome profiling, in silico analysis, immunohistochemistry, western blot, RT-qPCR and immunofluorescence staining to characterize novel CRC immune biomarkers. The effects of selective antagonists were tested by in vitro assays of long term viability and analysis of kinase active forms using anti-phospho antibodies. Results: We identified the lymphocyte antigen 6 complex, locus G6D (LY6G6D) as significantly overexpressed (around 15-fold) in CRC when compared with its relatively low expression in other human solid tumours. LY6G6D up-regulation was predominant in MSS CRCs characterized by an enrichment of immune suppressive regulatory T-cells and a limited repertoire of PD-1/PD-L1 immune checkpoint receptors. Coexpression of LY6G6D and CD15 increases the risk of metastatic relapse in response to therapy. Both JAK-STAT5 and RAS-MEK-ERK cascades act in concert as key regulators of LY6G6D and Fucosyltransferase 4 (FUT4), which direct CD15-mediated immune-resistance. Momelotinib, an inhibitor of JAK1/JAK2, consistently abrogated the STAT5/LY6G6D axis in vitro, sensitizing MSS cancer cells with an intact JAK-STAT signaling, to efficiently respond to trametinib, a MEK inhibitor used in clinical setting. Notably, colon cancer cells can evade JAK2/JAK1-targeted therapy by a reversible shift of the RAS-MEK-ERK pathway activity, which explains the treatment failure of JAK1/2 inhibitors in refractory CRC. Conclusions: Combined targeting of STAT5 and MAPK pathways has superior therapeutic effects on immune resistance. In addition, the new identified LY6G6D antigen is a promising molecular target for human MSS CRC

    Loss of Primary Cilia Potentiates BRAF/MAPK Pathway Activation in Rhabdoid Colorectal Carcinoma: A Series of 21 Cases Showing Ciliary Rootlet CoiledCoil (CROCC) Alterations

    Get PDF
    A rhabdoid colorectal tumor (RCT) is a rare cancer with aggressive clinical behavior. Recently, it has been recognized as a distinct disease entity, characterized by genetic alterations in the SMARCB1 and Ciliary Rootlet Coiled-Coil (CROCC). We here investigate the genetic and immunophenotypic profiling of 21 RCTs using immunohistochemistry and next-generation sequencing. Mismatch repair-deficient phenotypes were identified in 60% of RCTs. Similarly, a large proportion of cancers exhibited the combined marker phenotype (CK7-/CK20-/CDX2-) not common to classical adenocarcinoma variants. More than 70% of cases displayed aberrant activation of the mitogen-activated protein kinase (MAPK) pathway with mutations prevalently in BRAF V600E. SMARCB1/INI1 expression was normal in a large majority of lesions. In contrast, ciliogenic markers including CROCC and γ-tubulin were globally altered in tumors. Notably, CROCC and γ-tubulin were observed to colocalize in large cilia found on cancer tissues but not in normal controls. Taken together, our findings indicate that primary ciliogenesis and MAPK pathway activation contribute to the aggressiveness of RCTs and, therefore, may constitute a novel therapeutic target
    • …
    corecore