55 research outputs found

    Comparison of direct and indirect methods to maximise the detection of Babesia caballi and Theileria equi infections in Central Southern Italy

    Get PDF
    : Equine piroplasmosis is a disease of equids, caused by tick-borne apicomplexan protozoan pathogens Babesia caballi and Theileria equi, which, according to the World Organisation for Animal Health (OIE), can be diagnosed by enzyme-linked immunosorbent assay (ELISA), immunofluorescent antibody test (IFAT) and polymerase chain reaction (PCR). The present study was conducted to evaluate and compare the assays available for the diagnosis of equine piroplasmosis. Data employed were obtained from 1300 blood samples collected between 2012-2014 from asymptomatic and symptomatic equines (horses and donkeys) of central-southern regions of Italy and analyzed by ELISA, IFAT, PCR (one commercial and one from literature) and blood smear microscopic examination. Statistical differences of the proportions of positivity for each parasite and group (asymptomatic and symptomatic) among the methods were verified by the z test to identify the most sensitive. The concordance between each pair of methods - for each parasite and within the groups - and trends in detection of suspect samples of four hypothetical diagnostic algorithms using serological and biomolecular assays were evaluated to identify the most suitable laboratory diagnostic workflow. The results of this study highlighted a lower capacity to detect suspect samples of commercial ELISA for B. caballi in all groups when compared to biomolecular methods and IFAT; and of the commercial PCRs in asymptomatic animals, identifying a PCR from literature and IFAT as the best choice for a combined diagnosis. For T. equi, IFAT detected more suspect samples than ELISA, even if the latter showed good performance and some samples were positive only by the ELISA and PCR, indicating that their simultaneous employment is still advantageous. Host-parasite interaction, amino-acid/genetic diversity and differences in detection limits among the assays could be among the reasons in explaining the present results. In view of further studies, ELISA should be used in combination with PCR, that should regularly be included in the laboratory diagnosis to maximise the detection of early infections and support the evaluation of pharmacological treatment

    Carbon Metabolism of Enterobacterial Human Pathogens Growing in Epithelial Colorectal Adenocarcinoma (Caco-2) Cells

    Get PDF
    Analysis of the genome sequences of the major human bacterial pathogens has provided a large amount of information concerning their metabolic potential. However, our knowledge of the actual metabolic pathways and metabolite fluxes occurring in these pathogens under infection conditions is still limited. In this study, we analysed the intracellular carbon metabolism of enteroinvasive Escherichia coli (EIEC HN280 and EIEC 4608-58) and Salmonella enterica Serovar Typhimurium (Stm 14028) replicating in epithelial colorectal adenocarcinoma cells (Caco-2). To this aim, we supplied [U-13C6]glucose to Caco-2 cells infected with the bacterial strains or mutants thereof impaired in the uptake of glucose, mannose and/or glucose 6-phosphate. The 13C-isotopologue patterns of protein-derived amino acids from the bacteria and the host cells were then determined by mass spectrometry. The data showed that EIEC HN280 growing in the cytosol of the host cells, as well as Stm 14028 replicating in the Salmonella-containing vacuole (SCV) utilised glucose, but not glucose 6-phosphate, other phosphorylated carbohydrates, gluconate or fatty acids as major carbon substrates. EIEC 4608-58 used C3-compound(s) in addition to glucose as carbon source. The labelling patterns reflected strain-dependent carbon flux via glycolysis and/or the Entner-Doudoroff pathway, the pentose phosphate pathway, the TCA cycle and anapleurotic reactions between PEP and oxaloacetate. Mutants of all three strains impaired in the uptake of glucose switched to C3-substrate(s) accompanied by an increased uptake of amino acids (and possibly also other anabolic monomers) from the host cell. Surprisingly, the metabolism of the host cells, as judged by the efficiency of 13C-incorporation into host cell amino acids, was not significantly affected by the infection with either of these intracellular pathogens

    Gadd45α activity is the principal effector of Shigella mitochondria-dependent epithelial cell death in vitro and ex vivo

    Get PDF
    Modulation of death is a pathogen strategy to establish residence and promote survival in host cells and tissues. Shigella spp. are human pathogens that invade colonic mucosa, where they provoke lesions caused by their ability to manipulate the host cell responses. Shigella spp. induce various types of cell death in different cell populations. However, they are equally able to protect host cells from death. Here, we have investigated on the molecular mechanisms and cell effectors governing the balance between survival and death in epithelial cells infected with Shigella. To explore these aspects, we have exploited both, the HeLa cell invasion assay and a novel ex vivo human colon organ culture model of infection that mimics natural conditions of shigellosis. Our results definitely show that Shigella induces a rapid intrinsic apoptosis of infected cells, via mitochondrial depolarization and the ensuing caspase-9 activation. Moreover, for the first time we identify the eukaryotic stress-response factor growth arrest and DNA damage 45α as a key player in the induction of the apoptotic process elicited by Shigella in epithelial cells, revealing an unexplored role of this molecule in the course of infections sustained by invasive pathogens

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5–11 December, to 17.5% (25/143 samples) in the week 12–18, to 65.9% (89/135 samples) in the week 19–25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased from one in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons. In conclusion, we designed an RT-qPCR assay capable to detect the Omicron variant, which can be successfully used for the purpose of wastewater-based epidemiology. We also described the history of the introduction and diffusion of the Omicron variant in the Italian population and territory, confirming the effectiveness of sewage monitoring as a powerful surveillance tool

    The Aspartate-Semialdehyde Dehydrogenase of Edwardsiella ictaluri and Its Use as Balanced-Lethal System in Fish Vaccinology

    Get PDF
    asdA mutants of Gram-negative bacteria have an obligate requirement for diaminopimelic acid (DAP), which is an essential constituent of the peptidoglycan layer of the cell wall of these organisms. In environments deprived of DAP, i.e., animal tissues, they will undergo lysis. Deletion of the asdA gene has previously been exploited to develop antibiotic-sensitive strains of live attenuated recombinant bacterial vaccines. Introduction of an Asd+ plasmid into a ΔasdA mutant makes the bacterial strain plasmid-dependent. This dependence on the Asd+ plasmid vector creates a balanced-lethal complementation between the bacterial strain and the recombinant plasmid. E. ictaluri is an enteric Gram-negative fish pathogen that causes enteric septicemia in catfish. Because E. ictaluri is a nasal/oral invasive intracellular pathogen, this bacterium is a candidate to develop a bath/oral live recombinant attenuated Edwardsiella vaccine (RAEV) for the catfish aquaculture industry. As a first step to develop an antibiotic-sensitive RAEV strain, we characterized and deleted the E. ictaluri asdA gene. E. ictaluri ΔasdA01 mutants exhibit an absolute requirement for DAP to grow. The asdA gene of E. ictaluri was complemented by the asdA gene from Salmonella. Several Asd+ expression vectors with different origins of replication were transformed into E. ictaluri ΔasdA01. Asd+ vectors were compatible with the pEI1 and pEI2 E. ictaluri native plasmids. The balanced-lethal system was satisfactorily evaluated in vivo. Recombinant GFP, PspA, and LcrV proteins were synthesized by E. ictaluri ΔasdA01 harboring Asd+ plasmids. Here we constructed a balanced-lethal system, which is the first step to develop an antibiotic-sensitive RAEV for the aquaculture industry

    The critical role of the linear plasmid lp36 in the infectious cycle of Borrelia burgdorferi

    Get PDF
    Borrelia burgdorferi, the aetiological agent of Lyme disease, follows a life cycle that involves passage between the tick vector and the mammalian host. To investigate the role of the 36 kb linear plasmid, lp36 (also designated the B. burgdorferi K plasmid), in the infectious cycle of B. burgdorferi, we examined a clone lacking this plasmid, but containing all other plasmids known to be required for infectivity. Our results indicated that lp36 was not required for spirochete survival in the tick, but the clone lacking lp36 demonstrated low infectivity in the mammal. Restoration of lp36 to the mutant strain confirmed that the infectivity defect was due to loss of lp36. Moreover, spirochetes lacking lp36 exhibited a nearly 4-log increase in ID50 relative to the isogenic lp36+ clone. The infectivity defect of lp36-minus spirochetes was localized, in part, to loss of the bbk17 (adeC) gene, which encodes an adenine deaminase. This work establishes a vital role for lp36 in the infectious cycle of B. burgdorferi and identifies the bbk17 gene as a component of this plasmid that contributes to mammalian infectivity

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5–11 December, to 17.5% (25/143 samples) in the week 12–18, to 65.9% (89/135 samples) in the week 19–25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased fromone in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons
    corecore