294 research outputs found

    Enhancing low-rank solutions in semidefinite relaxations of Boolean quadratic problems

    Get PDF
    Boolean quadratic optimization problems occur in a number of applications. Their mixed integer-continuous nature is challenging, since it is inherently NP-hard. For this motivation, semidefinite programming relaxations (SDR's) are proposed in the literature to approximate the solution, which recasts the problem into convex optimization. Nevertheless, SDR's do not guarantee the extraction of the correct binary minimizer. In this paper, we present a novel approach to enhance the binary solution recovery. The key of the proposed method is the exploitation of known information on the eigenvalues of the desired solution. As the proposed approach yields a non-convex program, we develop and analyze an iterative descent strategy, whose practical effectiveness is shown via numerical results

    Sparse linear regression from perturbed data

    Full text link
    The problem of sparse linear regression is relevant in the context of linear system identification from large datasets. When data are collected from real-world experiments, measurements are always affected by perturbations or low-precision representations. However, the problem of sparse linear regression from fully-perturbed data is scarcely studied in the literature, due to its mathematical complexity. In this paper, we show that, by assuming bounded perturbations, this problem can be tackled by solving low-complex l2 and l1 minimization problems. Both theoretical guarantees and numerical results are illustrated in the paper

    Sparse learning with concave regularization: relaxation of the irrepresentable condition

    Get PDF
    Learning sparse models from data is an important task in all those frameworks where relevant information should be identified within a large dataset. This can be achieved by formulating and solving suitable sparsity promoting optimization problems. As to linear regression models, Lasso is the most popular convex approach, based on an L1-norm regularization. In contrast, in this paper, we analyse a concave regularized approach, and we prove that it relaxes the irrepresentable condition, which is sufficient and essentially necessary for Lasso to select the right significant parameters. In practice, this has the benefit of reducing the number of necessary measurements with respect to Lasso. Since the proposed problem is nonconvex, we also discuss different algorithms to solve it, and we illustrate the obtained enhancement via numerical experiments

    Post Activation Potentiation of Back Squat and Trap Bar Deadlift on Acute Sprint Performance

    Get PDF
    Please refer to the pdf version of the abstract located adjacent to the title

    Fixed-order FIR approximation of linear systems from quantized input and output data

    Get PDF
    Abstract The problem of identifying a fixed-order FIR approximation of linear systems with unknown structure, assuming that both input and output measurements are subjected to quantization, is dealt with in this paper. A fixed-order FIR model providing the best approximation of the input-output relationship is sought by minimizing the worst-case distance between the output of the true system and the modeled output, for all possible values of the input and output data consistent with their quantized measurements. The considered problem is firstly formulated in terms of robust optimization. Then, two different algorithms to compute the optimum of the formulated problem by means of linear programming techniques are presented. The effectiveness of the proposed approach is illustrated by means of a simulation example

    Dynamic surface electromyography using stretchable screen-printed textile electrodes

    Get PDF
    Objective. Wearable devices have created new opportunities in healthcare and sport sciences by unobtrusively monitoring physiological signals. Textile polymer-based electrodes proved to be effective in detecting electrophysiological potentials but suffer mechanical fragility and low stretch resistance. The goal of this research is to develop and validate in dynamic conditions cost-effective and easily manufacturable electrodes characterized by adequate robustness and signal quality. Methods. We here propose an optimized screen printing technique for the fabrication of PEDOT:PSS-based textile electrodes directly into finished stretchable garments for surface electromyography (sEMG) applications. A sensorised stretchable leg sleeve was developed, targeting five muscles of interest in rehabilitation and sport science. An experimental validation was performed to assess the accuracy of signal detection during dynamic exercises, including sit-to-stand, leg extension, calf raise, walking, and cycling. Results. The electrodes can resist up to 500 stretch cycles. Tests on five subjects revealed excellent contact impedance, and cross-correlation between sEMG envelopes simultaneously detected from the leg muscles by the textile and Ag/AgCl electrodes was generally greater than 0.9, which proves that it is possible to obtain good quality signals with performance comparable with disposable electrodes. Conclusions. An effective technique to embed polymer-based electrodes in stretchable smart garments was presented, revealing good performance for dynamic sEMG detections. Significance. The achieved results pave the way to the integration of unobtrusive electrodes, obtained by screen printing of conductive polymers, into technical fabrics for rehabilitation and sport monitoring, and in general where the detection of sEMG in dynamic conditions is necessary

    Minimal LPV state-space realization driven set-membership identification

    Get PDF
    Abstract-Set-membership identification algorithms have been recently proposed to derive linear parameter-varying (LPV) models in input-output form, under the assumption that both measurements of the output and the scheduling signals are affected by bounded noise. In order to use the identified models for controller synthesis, linear time-invariant (LTI) realization theory is usually applied to derive a statespace model whose matrices depend statically on the scheduling signals, as required by most of the LPV control synthesis techniques. Unfortunately, application of the LTI realization theory leads to an approximate state-space description of the original LPV input-output model. In order to limit the effect of the realization error, a new set-membership algorithm for identification of input/output LPV models is proposed in the paper. A suitable nonconvex optimization problem is formulated to select the model in the feasible set which minimizes a suitable measure of the state-space realization error. The solution of the identification problem is then derived by means of convex relaxation techniques

    Design of a Programmable and Modular Neuromuscular Electrical Stimulator Integrated into a Wireless Body Sensor Network

    Get PDF
    Neuromuscular electrical stimulation finds application in several fields, from basic neurophysiology, to motor rehabilitation and cardiovascular conditioning. Despite the progressively increasing interest in this technique, its State-of-the-Art technology is mainly based on monolithic, mostly wired devices, leading to two main issues. First, these devices are often bulky, limiting their usability in applied contexts. Second, the possibility of interfacing these stimulation devices with external systems for the acquisition of electrophysiological and biomechanical variables to control the stimulation output is often limited. The aim of this work is to describe the design and development of an innovative electrical stimulator, specifically developed to contend with these issues. The developed device is composed of wireless modules that can be programmed and easily interfaced with third-party instrumentation. Moreover, benefiting from the system modular architecture, stimulation may be delivered concurrently to different sites while greatly reducing cable encumbrance. The main design choices and experimental tests are documented, evidencing the practical potential of the device in use-case scenarios

    The Agile Alert System For Gamma-Ray Transients

    Full text link
    In recent years, a new generation of space missions offered great opportunities of discovery in high-energy astrophysics. In this article we focus on the scientific operations of the Gamma-Ray Imaging Detector (GRID) onboard the AGILE space mission. The AGILE-GRID, sensitive in the energy range of 30 MeV-30 GeV, has detected many gamma-ray transients of galactic and extragalactic origins. This work presents the AGILE innovative approach to fast gamma-ray transient detection, which is a challenging task and a crucial part of the AGILE scientific program. The goals are to describe: (1) the AGILE Gamma-Ray Alert System, (2) a new algorithm for blind search identification of transients within a short processing time, (3) the AGILE procedure for gamma-ray transient alert management, and (4) the likelihood of ratio tests that are necessary to evaluate the post-trial statistical significance of the results. Special algorithms and an optimized sequence of tasks are necessary to reach our goal. Data are automatically analyzed at every orbital downlink by an alert pipeline operating on different timescales. As proper flux thresholds are exceeded, alerts are automatically generated and sent as SMS messages to cellular telephones, e-mails, and push notifications of an application for smartphones and tablets. These alerts are crosschecked with the results of two pipelines, and a manual analysis is performed. Being a small scientific-class mission, AGILE is characterized by optimization of both scientific analysis and ground-segment resources. The system is capable of generating alerts within two to three hours of a data downlink, an unprecedented reaction time in gamma-ray astrophysics.Comment: 34 pages, 9 figures, 5 table
    • …
    corecore