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A concave approach to errors-in-variables
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Abstract Sparse linear system identification can be performed through convex optimization,
by the minimization of an �1-norm functional. If an errors-in-variables model is considered, the
problem is more challenging as inherently non-convex. The �1-norm approach for the errors-
in-variables model is studied in recent literature. In this work, we propose to replace the �1-
norm functional by a concave functional. Concave functionals have been shown to improve
the performance in practical experiments of sparse linear regression; nevertheless, theoretical
analyses of this improvement are missing in the errors-in-variables setting. The goal of this
paper is to fill this gap, by studying conditions that guarantee that the concave approach is
variable selection consistent. Moreover, we illustrate how to implement it through �1 reweighting
techniques, and we present numerical simulations that show its effectiveness.

Keywords: Errors-in-variables identification, linear systems, sparse optimization, non-convex
optimization, compressed sensing.

1. INTRODUCTION

Sparse system identification is the science of learning par-
simonious models from data, that is, models that depend
on a relatively small number of parameters. Usually, the
available data are experimental measurements of the input
and output of the system that one aims to characterize.
The need for parsimony is crucial for many motivations.
Nowadays, it is possible to acquire large amounts of data,
which supports a better description of systems. Never-
theless, the abundance of data may induce problems of
overfitting in system identification, which requires suitable
strategies to prune the obtained solutions. Typically, an
overfitted model does not provide an interpretable physical
description of the considered system, and also may incur
into an excessive numerical complexity, due to a large num-
ber of parameters, see Hastie et al. (2015); Brunton and
Kutz (2019). This issue has propelled the application of
sparse optimization techniques to trim solutions in system
identification, statistical learning, and, more recently, in
deep learning. The common idea in these different fields is
to use optimization techniques that remove the redundant
parameters and weights, by forcing their values to zero.
Specifically, the problem is formulated with a large number
of potential parameters, most of which are then nullified
by using suitable cost functionals and penalties. In other
terms, the problem consists in identifying the few most
significant parameters, and discarding the others. The
identification of the most significant parameters is also
referred to as variable selection.

From a mathematical perspective, variable selection is an
NP-hard problem, see (Foucart and Rauhut, 2013, Section
2.3). In the last decades, this fact has motivated the
research of approximated, possibly convex, alternatives
to the original formulation, which has lead to the use
of the �1-norm as cost functional or penalty to promote

sparsity, see Tibshirani (1996). Indeed, the �1-norm is the
convex approximation of the �0-norm, which counts the
number of non-zero parameters. Analyses of the �1-norm
variable selection consistency have been provided, see, e.g.,
(Foucart and Rauhut, 2013, Chapter 4) and (Hastie et al.,
2015, Chapter 11), and its use is very popular in many
applications.

As to linear dynamical systems, some peculiar features are
associated with sparse system identification. In particular,
the identification task turns out to be a linear regression
problem, and compressed sensing (CS, Donoho (2006)) can
be applied to learn the significant parameters. Specifically,
the theory of CS proves that sparse vectors, i.e., vectors
with few non-zero components, can be recovered from a
relatively small number of measurements. The reconstruc-
tion can be performed by using the �1-norm approach
mentioned above. CS has been applied to sparse linear
system identification, see, e.g., Tóth et al. (2012); Rojas
et al. (2014); Fosson et al. (2020), with a relevant caveat:
the theorems that guarantee an effective reconstruction
in CS with tight conditions leverage the hypothesis that
the regressors are random and independent, which is not
the case of input/output linear systems. This yields to the
necessity of a larger number of measurements in system
identification with respect to CS, but still compressed with
respect to the original dimension of the problem.

Furthermore, classical CS envisages the possible presence
of measurement noise, but not on the regression matrix,
which is assumed to be exactly known. Nevertheless, this
is not the case in data-driven problems, where both input
and output are experimentally measured, hence naturally
affected by perturbations. In linear system identification,
the regression matrix contains both input and output
elements, then it is sufficient to have disturbances in
the observation of either input or output to affect it. In

A concave approach to errors-in-variables
sparse linear system identification

S. M. Fosson ∗ V. Cerone ∗ D. Regruto ∗ T. Abdalla ∗

∗ Department of Control and Computer Engineering, Politecnico di
Torino, Italy (e-mail: sophie.fosson@polito.it).

Abstract Sparse linear system identification can be performed through convex optimization,
by the minimization of an �1-norm functional. If an errors-in-variables model is considered, the
problem is more challenging as inherently non-convex. The �1-norm approach for the errors-
in-variables model is studied in recent literature. In this work, we propose to replace the �1-
norm functional by a concave functional. Concave functionals have been shown to improve
the performance in practical experiments of sparse linear regression; nevertheless, theoretical
analyses of this improvement are missing in the errors-in-variables setting. The goal of this
paper is to fill this gap, by studying conditions that guarantee that the concave approach is
variable selection consistent. Moreover, we illustrate how to implement it through �1 reweighting
techniques, and we present numerical simulations that show its effectiveness.

Keywords: Errors-in-variables identification, linear systems, sparse optimization, non-convex
optimization, compressed sensing.

1. INTRODUCTION

Sparse system identification is the science of learning par-
simonious models from data, that is, models that depend
on a relatively small number of parameters. Usually, the
available data are experimental measurements of the input
and output of the system that one aims to characterize.
The need for parsimony is crucial for many motivations.
Nowadays, it is possible to acquire large amounts of data,
which supports a better description of systems. Never-
theless, the abundance of data may induce problems of
overfitting in system identification, which requires suitable
strategies to prune the obtained solutions. Typically, an
overfitted model does not provide an interpretable physical
description of the considered system, and also may incur
into an excessive numerical complexity, due to a large num-
ber of parameters, see Hastie et al. (2015); Brunton and
Kutz (2019). This issue has propelled the application of
sparse optimization techniques to trim solutions in system
identification, statistical learning, and, more recently, in
deep learning. The common idea in these different fields is
to use optimization techniques that remove the redundant
parameters and weights, by forcing their values to zero.
Specifically, the problem is formulated with a large number
of potential parameters, most of which are then nullified
by using suitable cost functionals and penalties. In other
terms, the problem consists in identifying the few most
significant parameters, and discarding the others. The
identification of the most significant parameters is also
referred to as variable selection.

From a mathematical perspective, variable selection is an
NP-hard problem, see (Foucart and Rauhut, 2013, Section
2.3). In the last decades, this fact has motivated the
research of approximated, possibly convex, alternatives
to the original formulation, which has lead to the use
of the �1-norm as cost functional or penalty to promote

sparsity, see Tibshirani (1996). Indeed, the �1-norm is the
convex approximation of the �0-norm, which counts the
number of non-zero parameters. Analyses of the �1-norm
variable selection consistency have been provided, see, e.g.,
(Foucart and Rauhut, 2013, Chapter 4) and (Hastie et al.,
2015, Chapter 11), and its use is very popular in many
applications.

As to linear dynamical systems, some peculiar features are
associated with sparse system identification. In particular,
the identification task turns out to be a linear regression
problem, and compressed sensing (CS, Donoho (2006)) can
be applied to learn the significant parameters. Specifically,
the theory of CS proves that sparse vectors, i.e., vectors
with few non-zero components, can be recovered from a
relatively small number of measurements. The reconstruc-
tion can be performed by using the �1-norm approach
mentioned above. CS has been applied to sparse linear
system identification, see, e.g., Tóth et al. (2012); Rojas
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Specifically, the problem is formulated with a large number
of potential parameters, most of which are then nullified
by using suitable cost functionals and penalties. In other
terms, the problem consists in identifying the few most
significant parameters, and discarding the others. The
identification of the most significant parameters is also
referred to as variable selection.

From a mathematical perspective, variable selection is an
NP-hard problem, see (Foucart and Rauhut, 2013, Section
2.3). In the last decades, this fact has motivated the
research of approximated, possibly convex, alternatives
to the original formulation, which has lead to the use
of the �1-norm as cost functional or penalty to promote

sparsity, see Tibshirani (1996). Indeed, the �1-norm is the
convex approximation of the �0-norm, which counts the
number of non-zero parameters. Analyses of the �1-norm
variable selection consistency have been provided, see, e.g.,
(Foucart and Rauhut, 2013, Chapter 4) and (Hastie et al.,
2015, Chapter 11), and its use is very popular in many
applications.

As to linear dynamical systems, some peculiar features are
associated with sparse system identification. In particular,
the identification task turns out to be a linear regression
problem, and compressed sensing (CS, Donoho (2006)) can
be applied to learn the significant parameters. Specifically,
the theory of CS proves that sparse vectors, i.e., vectors
with few non-zero components, can be recovered from a
relatively small number of measurements. The reconstruc-
tion can be performed by using the �1-norm approach
mentioned above. CS has been applied to sparse linear
system identification, see, e.g., Tóth et al. (2012); Rojas
et al. (2014); Fosson et al. (2020), with a relevant caveat:
the theorems that guarantee an effective reconstruction
in CS with tight conditions leverage the hypothesis that
the regressors are random and independent, which is not
the case of input/output linear systems. This yields to the
necessity of a larger number of measurements in system
identification with respect to CS, but still compressed with
respect to the original dimension of the problem.

Furthermore, classical CS envisages the possible presence
of measurement noise, but not on the regression matrix,
which is assumed to be exactly known. Nevertheless, this
is not the case in data-driven problems, where both input
and output are experimentally measured, hence naturally
affected by perturbations. In linear system identification,
the regression matrix contains both input and output
elements, then it is sufficient to have disturbances in
the observation of either input or output to affect it. In
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identification with respect to CS, but still compressed with
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Furthermore, classical CS envisages the possible presence
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which is assumed to be exactly known. Nevertheless, this
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the literature, this is known as errors-in-variables (EIV)
problem, which is challenging since inherently non-convex.

In Cerone et al. (2012), the EIV linear system identifica-
tion is tackled in a set-membership perspective, by using
techniques of polynomial optimization. Nevertheless, this
approach may be computationally demanding for sparse
identification from high-dimensional data. In Fosson et al.
(2020), an �1 approach is proposed for EIV linear re-
gression, which does not depend on the structure of the
matrix. This recasts the problem into convex optimization,
provided that a preliminary estimate of the parameters’
signs is obtained through ridge regression.

In the last years, concave alternatives to the �1-norm
have been developed in sparse optimization, which are
observed to be more precise than the �1-norm, see, e.g.,
Zhang (2010); Loh and Wainwright (2017); Fosson (2018);
Woodworth and Chartrand (2016) and references therein.
Basically, concave functionals are closer to �0-norm, then
more favorable to support sparsity than the �1-norm, with
respect to which they have less bias. Among the most
popular ones, we mention the log functional, see Candès
et al. (2008), the minimax concave penalty, see Zhang
(2010), and the �pp-norm, with p ∈ (0, 1), see Foucart and
Laui (2009).

To the best of our knowledge, those non-convex techniques
have not yet been applied and analyzed in the EIV
framework. The goal of this paper is to fill this gap,
by proposing and analyzing a concave approach for EIV
sparse linear system identification. Specifically, the main
contributions of this work are: the definition of a suitable
concave optimization problem for EIV sparse linear system
identification; the analysis of this approach in terms of
variable selection consistency; the implementation of an
effective algorithm to solve the proposed optimization
problem; the illustration of numerical results.

The paper is organized as follows. In Section 2, we define
a suitable optimization problem with concave cost func-
tional; in Section 3, we analyze its effectiveness, by proving
sufficient conditions for its variable selection consistency.
In Section 4, we provide the solving algorithm, and test it
through numerical experiments.

2. PROBLEM STATEMENT

In this paper, we consider a discrete-time, single-input
single-output (SISO), linear-time-invariant (LTI) system
ruled by following-input output relation:

yt =

na∑
p=1

apyt−p +

nb∑
q=1

bqut−q (1)

where ut ∈ R and yt ∈ R respectively are the input and
the output at time t. We consider an EIV model: ut and yt
are experimentally measured, thus corrupted by additive
noises ξt and ηt. Then, the available data are:

ut = ut + ξt, yt = yt + ηt. (2)

The noises are unknown, while we assume that their
magnitudes do not overcome known bounds:

|ξt| ≤ ∆ξ, |ηt| ≤ ∆η. (3)

No prior information on the probabilistic distribution of
the noises is considered, which envisages also quantization

and truncation errors, possibly due to the transmission of
the data over communication channels, see Cerone et al.
(2019).

Our final aim is to perform a variable selection in θ =
(a1, . . . , ana

, b1, . . . , bnb
)T ∈ Rn, n = na + nb, i.e., to

identify the most significant parameters, by applying a
suitable sparsity promoting technique in the estimation
of θ.

The total dimension n might be large, and we aim to keep
the number of observations as small as possible. If we set
a time window of length m, the noise-free problem can be
interpreted as a linear regression (yt+1, . . . , yt+m)T = Aθ
where

A =




yt · · · yt−na+1 ut · · · ut−nb+1

yt+1 · · · yt−na+2 ut+1 · · · ut−nb+2

...
...

yt+m−1 · · · yt+m−na ut+m−1 · · · ut+m−nb


 .

(4)
If m < n, we can recast the problem into CS, as illustrated
in Tóth et al. (2011), and the minimization of the �1-norm
can be tackled to estimate the sparsest θ that satisfies
(yt+1, . . . , yt+m)T = Aθ, see Tóth et al. (2011); Rojas et al.
(2014) for details.

When the EIV model is considered, the problem turns
into non-convex, bilinear optimization, as A is not exactly
known and is multiplied by the unknown θ. In the litera-
ture, this EIV linear regression problem has been tackled
in different ways. In Cerone (1993), a feasible parameter
set is estimated, by recasting the problem into convex
sub-problems. In Cerone et al. (2012), such estimation is
refined, by approximating the problem by convex relax-
ations of polynomial optimization problems; this approach
is valuable for a reduced number of parameters, and is not
focused on high-dimensional variable selection. In sparse
optimization, the bilinear problem has been tackled by
moving the weight of noise into a vector e ∈ Rm such
that (yt+1, . . . , yt+m)T = Aθ+e, then by tackling it with a
usual �1-norm approach, see Herman and Strohmer (2010).
Nevertheless, this is not very effective, as illustrated in
Fosson et al. (2020), where an �1 approach is proposed and
analyzed, specific for the EIV model. By starting from the
approach of Cerone (1993), in Fosson et al. (2020) a pre-
processing, based on ridge regression, is proposed, that
effectively evaluates the parameters’ signs: this recasts
the problem into linear programming (LP). We refer the
reader to Fosson et al. (2020) for more details on this pre-
processing. Here, we assume that the signs are correctly
assessed by this pre-processing. Without loss of generality,
in the following we assume that all the parameters θi,
i = 1, . . . , n, are non-negative, so that ‖θ‖1 =

∑n
i=1 θi.

Let

A :=




yt · · · yt−na+1 ut · · · ut−nb+1

yt+1 · · · yt−na+2 ut+1 · · · ut−nb+2

...
...

yt+m−1 · · · yt+m−na
ut+m−1 · · · ut+m−nb


 .

(5)
Moreover, for notational simplicity, let us consider ∆ =
max{∆ξ,∆η}. Then, in Fosson et al. (2020) the variable
selection is performed by solving the following LP:
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Problem P1 :

min
θ∈Rn

+

n∑
i=1

θi s. t. Cθ � f

where

C =

(
A−∆1m1T

n

−A−∆1m1T
n

)
∈ R2m,n

f =

(
y +∆1m

−y +∆1m

)
∈ R2m

(6)

where � denotes the component-wise inequality between
matrices. In Cerone et al. (2019), it is proposed to replace∑n

i=1 θi with
∑n

i=1
α+β
2 θi − θ2i , given that each non-zero

component of θ belongs to a compact interval [α, β] with
0 < α < β. Then, the solution is evaluated by polyno-
mial optimization techniques. This approach is shown to
perform better, in terms of variable selection, than the �1
approach in a sparse linear regression experiment, with
independent regressors; however, theoretical guarantees of
improvement are missing. Moreover, the computational
complexity of that approach is intense, then not feasible
in high-dimensional problems.

In this paper, we propose a concave approach to the EIV
model, and we discuss its enhancement with respect to the
�1 approach of P1. Moreover, we provide a low-complex
algorithm to implement it. Specifically, we propose the
following optimization problem:

Problem Plog :

min
θ∈Rn

+

n∑
i=1

log(θi + ε) s. t. Cθ � f

where

C =

(
A−∆1m1T

n

−A−∆1m1T
n

)
∈ R2m,n

f =

(
y +∆1m

−y +∆1m

)
∈ R2m.

(7)

where ε > 0 is an arbitrarily small design parameter.
The log functional, studied, e.g., in Candès et al. (2008);
Fosson (2018), is chosen as it is tractable for our purposes.
However, the minimax convex penalty Zhang (2010) and
�pp, p ∈ (0, 1) Foucart and Laui (2009) may be valuable
alternatives, and will be considered in future work.

3. ANALYSIS

In this section, we propose an analysis of problem Plog.
Specifically, we evaluate and discuss conditions under
which the solution of Plog is variable selection consistent
(VSC), that is, correctly identifies the support of the true
vector of parameters z ∈ Rn.

In Fosson et al. (2020), Theorem 2 provides a set of condi-
tions, that we denote as C, that are sufficient to guarantee
that P1 is VSC. At present, C represents the state-of-
the-art condition set for linear sparse identification in the
EIV setting; for this motivation it can be considered as
benchmark.

Let S be the the support of z, i.e., the set of indices of the
non-zero components of z, and let Sc be its complemen-
tary. Let τ > 0 a suitable threshold that discriminates
between null and non-null parameters. For example, if

we priorly know c := mini∈S |zi| and d := maxi∈S |zi|,
then it might be natural to set τ = c

2 . Then, given a
candidate solution β �= z, (Fosson et al., 2020, Theorem
2) proves that ‖β − z‖∞ < τ , hence P1 is VSC, under
conditions on the maximum noise and on the coherence
of the matrix A. More precisely, given w := β − z and
φ :=

√
m[∆(2 + kd + kβd)], if there exist ν ∈ (0, 1) and

ψ ∈ (1, 2) such that

C :




for each i ∈ Sc :
∑
l∈S

|AT
i Al| ≤

1− ν

ψ
.

for each j ∈ S :
∑

l∈S,l �=j

|AT
j Al| ≤ 1− 1 + ν

ψ

τν > φkψ

then P1 is VSC.

This result is obtained by using the fact that

‖β‖1 − ‖z‖1 ≥ ‖wSc‖1 − ‖wS‖1 (8)

and by verifying whether the solution of the following LP
is positive:

min
|w|∈Rn

+

‖wSc‖1 − ‖wS‖1

s.t.

(
Γ

−eTj

)
|w| �

(
φ1n

−τ

) (9)

where Γ := I −|I −A
T
A| ∈ Rn,n. The core of our analysis

is to show that a similar LP approach can be used when
the �1-norm functional is replaced by the log functional.

Let z + w, with w �= 0 any vector in [0, d]n, with support

Ŝ �= S. We remark that wi ∈ [0, d] when i ∈ Sc, and wi ∈
[−zi, d − zi] when i ∈ S. Then, z + w is not a solution to
problem Plog if

∑n
i=1 [log(zi + wi + ε)− log(zi + ε)] > 0.

Since this functional is non-convex, we evaluate its linear
lower bound. We have
n∑

i=1

[log(zi + wi + ε)− log(zi + ε)] =

n∑
i=1

log

(
1 +

wi

zi + ε

)

=
∑
i∈Sc

log
(
1 +

wi

ε

)
+
∑
i∈S

log

(
1 +

wi

zi + ε

)

(10)

and

for each i ∈ Sc : log
(
1 +

wi

ε

)
≥ r(wi) := swi

for each i ∈ S : log

(
1 +

wi

zi + ε

)
≥ r(wi) + gi

where

s :=
1

d
log

(
1 +

d

ε

)

gi := szi + log

(
ε

zi + ε

)
.

(11)

An illustration of these inequalities is depicted in Fig. 1.

At this point, we can state the following result. Let G :=∑n
i∈S

|gi|
s . We observe that gi

s = zi+d log ε−log(zi+ε)
log(d+ε)−log ε → zi−

d for ε → 0. Therefore, for sufficiently small ε, G ≤ k(d−c).

Proposition 1. If there exist ν ∈ (0, 1) and φ ∈ (1, 2) such
that
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n

)
∈ R2m,n

f =

(
y +∆1m

−y +∆1m

)
∈ R2m

(6)

where � denotes the component-wise inequality between
matrices. In Cerone et al. (2019), it is proposed to replace∑n

i=1 θi with
∑n

i=1
α+β
2 θi − θ2i , given that each non-zero

component of θ belongs to a compact interval [α, β] with
0 < α < β. Then, the solution is evaluated by polyno-
mial optimization techniques. This approach is shown to
perform better, in terms of variable selection, than the �1
approach in a sparse linear regression experiment, with
independent regressors; however, theoretical guarantees of
improvement are missing. Moreover, the computational
complexity of that approach is intense, then not feasible
in high-dimensional problems.

In this paper, we propose a concave approach to the EIV
model, and we discuss its enhancement with respect to the
�1 approach of P1. Moreover, we provide a low-complex
algorithm to implement it. Specifically, we propose the
following optimization problem:

Problem Plog :

min
θ∈Rn

+

n∑
i=1

log(θi + ε) s. t. Cθ � f

where

C =

(
A−∆1m1T

n

−A−∆1m1T
n

)
∈ R2m,n

f =

(
y +∆1m

−y +∆1m

)
∈ R2m.

(7)

where ε > 0 is an arbitrarily small design parameter.
The log functional, studied, e.g., in Candès et al. (2008);
Fosson (2018), is chosen as it is tractable for our purposes.
However, the minimax convex penalty Zhang (2010) and
�pp, p ∈ (0, 1) Foucart and Laui (2009) may be valuable
alternatives, and will be considered in future work.

3. ANALYSIS

In this section, we propose an analysis of problem Plog.
Specifically, we evaluate and discuss conditions under
which the solution of Plog is variable selection consistent
(VSC), that is, correctly identifies the support of the true
vector of parameters z ∈ Rn.

In Fosson et al. (2020), Theorem 2 provides a set of condi-
tions, that we denote as C, that are sufficient to guarantee
that P1 is VSC. At present, C represents the state-of-
the-art condition set for linear sparse identification in the
EIV setting; for this motivation it can be considered as
benchmark.

Let S be the the support of z, i.e., the set of indices of the
non-zero components of z, and let Sc be its complemen-
tary. Let τ > 0 a suitable threshold that discriminates
between null and non-null parameters. For example, if

we priorly know c := mini∈S |zi| and d := maxi∈S |zi|,
then it might be natural to set τ = c

2 . Then, given a
candidate solution β �= z, (Fosson et al., 2020, Theorem
2) proves that ‖β − z‖∞ < τ , hence P1 is VSC, under
conditions on the maximum noise and on the coherence
of the matrix A. More precisely, given w := β − z and
φ :=

√
m[∆(2 + kd + kβd)], if there exist ν ∈ (0, 1) and

ψ ∈ (1, 2) such that

C :




for each i ∈ Sc :
∑
l∈S

|AT
i Al| ≤

1− ν

ψ
.

for each j ∈ S :
∑

l∈S,l �=j

|AT
j Al| ≤ 1− 1 + ν

ψ

τν > φkψ

then P1 is VSC.

This result is obtained by using the fact that

‖β‖1 − ‖z‖1 ≥ ‖wSc‖1 − ‖wS‖1 (8)

and by verifying whether the solution of the following LP
is positive:

min
|w|∈Rn

+

‖wSc‖1 − ‖wS‖1

s.t.

(
Γ

−eTj

)
|w| �

(
φ1n

−τ

) (9)

where Γ := I −|I −A
T
A| ∈ Rn,n. The core of our analysis

is to show that a similar LP approach can be used when
the �1-norm functional is replaced by the log functional.

Let z + w, with w �= 0 any vector in [0, d]n, with support

Ŝ �= S. We remark that wi ∈ [0, d] when i ∈ Sc, and wi ∈
[−zi, d − zi] when i ∈ S. Then, z + w is not a solution to
problem Plog if

∑n
i=1 [log(zi + wi + ε)− log(zi + ε)] > 0.

Since this functional is non-convex, we evaluate its linear
lower bound. We have
n∑

i=1

[log(zi + wi + ε)− log(zi + ε)] =

n∑
i=1

log

(
1 +

wi

zi + ε

)

=
∑
i∈Sc

log
(
1 +

wi

ε

)
+
∑
i∈S

log

(
1 +

wi

zi + ε

)

(10)

and

for each i ∈ Sc : log
(
1 +

wi

ε

)
≥ r(wi) := swi

for each i ∈ S : log

(
1 +

wi

zi + ε

)
≥ r(wi) + gi

where

s :=
1

d
log

(
1 +

d

ε

)

gi := szi + log

(
ε

zi + ε

)
.

(11)

An illustration of these inequalities is depicted in Fig. 1.

At this point, we can state the following result. Let G :=∑n
i∈S

|gi|
s . We observe that gi

s = zi+d log ε−log(zi+ε)
log(d+ε)−log ε → zi−

d for ε → 0. Therefore, for sufficiently small ε, G ≤ k(d−c).

Proposition 1. If there exist ν ∈ (0, 1) and φ ∈ (1, 2) such
that

-1.5 -1 -0.5 0 0.5 1 1.5 2

-3

-2

-1

0

1

2

3

Figure 1. Illustration of (11); [c, d] = [1, 2], zi = 1.5.

CPlog,1 :




for each i ∈ Sc :
∑
l∈S

|AT
i Al| ≤

1− ν

ψ
.

for each j ∈ S :
∑

l∈S,l �=j

|AT
j Al| ≤ 1− 1 + ν

ψ

τν > φkψ +G

then Plog is VSC.

Moreover, if c = d, that is, if z ∈ {0, d}n, then CPlog,1 is
equal to C.

Proof. From (10) and (11), if the following LP has a
positive solution, then Plog is VSC:

min
|w|∈Rn

+

‖wSc‖1 − ‖wS‖1 −G

s.t.

(
Γ

−eTj

)
|w| �

(
φ1n

−τ

)
.

(12)

By exploiting the proof of (Fosson et al., 2020, Theorem
2), (12) has positive solution if conditions CPlog,1 hold. On
the other hand, if c = d, then G = 0, and the problem is
equivalent to (9), and CPlog,1 corresponds to C.
Remark 1. If c < d, CPlog,1 is more demanding than C.
However, we notice that

n∑
i=1

[log(zi + wi + ε)− log(zi + ε)] ≥ s‖wSc‖1 − s‖wS‖1

(13)
for wi ≥ µi, for each i ∈ S, where µi is the intersection
point depicted in Fig. 1. In other terms, except for a region
Ωi (highlighted in green in Fig. 1), C is sufficient for Plog

to be VSC. Moreover, Ωi tends to zero when ε → 0.

Remark 2. The linear upper bound in (13) is generally
quite far from the original log function; this marks a
difference to P1, where the approximation (8) is tight. For
this motivation, we generally expect that those conditions
are sufficient, but not necessary for Plog, and that the
log approach has better performance in practice. Regard-
ing the 	1 approach, we also remark that the condition
‖wSc‖1 > ‖wS‖1 for vectors in the feasible set of solutions

is sufficient and necessary for perfect recovery in noise-free
CS, where is known as null-space property, see Foucart and
Rauhut (2013).

Now, we specify the results in the limit case ε → 0.

Corollary 1. If ε → 0, for each i ∈ S, µi → −zi and
Ωi → 0. This implies that, in the limit case, conditions
C are sufficient for Plog to be VSC.

Proof. µi is the solution of the following equation in
wi < 0:

log

(
1 +

wi

zi + ε

)
=

1

d
log

(
1 +

d

ε

)
wi.

If ε → 0, then 1
d log

(
1 + d

ε

)
wi → −∞. Therefore, we must

have log
(
1 + wi

zi+ε

)
→ −∞, which occurs if and only if

wi → −zi. This implies that the area Ωi → 0.

Beyond the limit case ε → 0, we can prove that if ε is
chosen sufficiently small, then the solution of Plog has no
components in Ωi.

Proposition 2. Let µ = mini∈S |µi|. If there exist ν ∈ (0, 1)
and ψ ∈ (1, 2) such that

CPlog,2 :




for each i ∈ Sc :
∑
l∈S

|AT
i Al| ≤

1

ψ

for each j ∈ S :
∑

l∈S,l �=j

|AT
j Al| ≤ 1− 1 + ν

ψ

µν > φkψ +G

then the solution to Plog has no components i ∈ S with
distance from zi larger than µi.

The proof, omitted for brevity, is based on the proof of
(Fosson et al., 2020, Theorem 2).

We remark that the third condition in CPlog,2 is feasible
when µ is large with respect to G, provided that the noise
is sufficiently small. Given that, for sufficiently small ε,
µ ≥ c and G ≤ k(d− c), the conditions are favorable when
the non-zero values of z are far from zero (i.e., c is large)
and concentrated in a relatively small interval (i.e., d − c
is small).

4. ALGORITHMS AND NUMERICAL RESULTS

In this section, we illustrate how to implement the pro-
posed Plog, and we present some numerical results.

4.1 Reweighting algorithm to solve Plog

The main challenge in the application of Plog is its non-
convexity. However, in the literature different approaches
have been proposed that can be adapted to our purpose.
In particular, in this work we focus on 	1 reweigthing
techniques, see Candès et al. (2008); Fosson (2018). Let
us consider a problem minx∈Rn

∑n
i=1 F(|xi|) where F :

R+ → R+, is a concave, sparsity promoting functional,
along with constraints provided by the data. The key
idea of 	1 reweigthing techniques is to iteratively minimize∑n

i=1 λi(t)|xi| where λi(t) = F ′(|xi(t)|. The rationale
behind this algorithm is that

∑n
i=1 F(|xi|) lies below the

tangent line, due to the concavity. Then, one can improve
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Figure 2. Identification of EIV ARX system (4): P1 (first column) vs Plog (second column).

an estimate v ∈ Rn by locally minimizing a linearization
around v. The term λi(t)|xi| comes from this linearization,
and corresponds to updating the weights based on the
previous estimate. Moreover, due to the concavity, the
components that are closer to zero are penalized more than
the others. For Plog, λi =

1
|xi|+ε .

This method, known as �1-reweigthing, is proven to con-
verge to a local minimum of the functional, see (Candès
et al., 2008, Section 2.3). The convergence of the iterates of
the algorithm is analyzed in Fosson (2018) in a Lasso-based
setting. Even though not guaranteed to achieve the global
minimum, �1-reweigthing has been shown to be effective
in several applications, see Fosson (2018).

The algorithm is summarized in Algorithm 1. For the
first iteration, it makes sense to initialize the weight in
a “democratic” way, namely λ(0) = (1, . . . , 1) ∈ Rn: this
means that the first iteration corresponds to P1 in our

setting. Each iteration requires the solution of an LP,
which keeps the complexity low. Typically, a small number
of iterations is sufficient to converge to a solution.

Algorithm 1 �1 reweigthing

1: Initialize: λ(0) = (1, . . . , 1) ∈ Rn; ε > 0

2: for all t = 1, . . . , Tstop do

3: λi(t) =
1

θi(t)+ε for each i ∈ {1, . . . , n}
4: θ(t+ 1) = argmin

θ∈Rn
+

∑n
i=1 λi(t)θi s.t. Cθ � f

5: end for

4.2 Numerical results

In this section, we present numerical results, in which
we compare P1 and Plog, the latest one implemented
with Algorithm 1. We consider the EIV ARX problem
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Figure 2. Identification of EIV ARX system (4): P1 (first column) vs Plog (second column).

an estimate v ∈ Rn by locally minimizing a linearization
around v. The term λi(t)|xi| comes from this linearization,
and corresponds to updating the weights based on the
previous estimate. Moreover, due to the concavity, the
components that are closer to zero are penalized more than
the others. For Plog, λi =

1
|xi|+ε .

This method, known as �1-reweigthing, is proven to con-
verge to a local minimum of the functional, see (Candès
et al., 2008, Section 2.3). The convergence of the iterates of
the algorithm is analyzed in Fosson (2018) in a Lasso-based
setting. Even though not guaranteed to achieve the global
minimum, �1-reweigthing has been shown to be effective
in several applications, see Fosson (2018).

The algorithm is summarized in Algorithm 1. For the
first iteration, it makes sense to initialize the weight in
a “democratic” way, namely λ(0) = (1, . . . , 1) ∈ Rn: this
means that the first iteration corresponds to P1 in our

setting. Each iteration requires the solution of an LP,
which keeps the complexity low. Typically, a small number
of iterations is sufficient to converge to a solution.

Algorithm 1 �1 reweigthing

1: Initialize: λ(0) = (1, . . . , 1) ∈ Rn; ε > 0

2: for all t = 1, . . . , Tstop do

3: λi(t) =
1

θi(t)+ε for each i ∈ {1, . . . , n}
4: θ(t+ 1) = argmin

θ∈Rn
+

∑n
i=1 λi(t)θi s.t. Cθ � f

5: end for

4.2 Numerical results

In this section, we present numerical results, in which
we compare P1 and Plog, the latest one implemented
with Algorithm 1. We consider the EIV ARX problem

as illustrated in Section 2. We set na = nb = 50, then
n = 100, and k = 10. The significant parameters have
magnitude in [c, d] = [0.2, 0.4]. In particular, they are
uniformly distributed in [−d,−c] ∪ [c, d]. The input is
generated according to a Gaussian distribution N (0, 1

10 ).

In Algorithm 1, we set to 3 the maximum number of
reweigthing iterations; as noticed in Candès et al. (2008);
Fosson (2018), a small number of reweigthing steps is
usually sufficient to obtain a good estimation. At each
iteration, an LP has to be solved, which is computationally
affordable. In particular, in our simulations we solve the
LP by the alternating direction method of multipliers
(ADMM, Boyd et al. (2010)) implemented in C++, which
requires a few seconds to solve Plog on standard hardware.

In Fig. 2, we illustrate the rates of exact support recov-
ery (i.e., the method is VSC), false positives (i.e., non-
significant parameters identified as significant), and false
negatives (i.e., significant parameters identified as non-
significant), at different ∆ and m. The results are aver-
aged over 200 random runs. For each ∆, the measured
signal-to-noise-ratio (SNR) is reported as well, defined as

10 log10
‖y‖2

2+‖A‖2
F

‖δy‖2
2+‖δA‖2

F

, where y = (yt+1, . . . , yt+m)T , δy and

δA denote the perturbations, and ‖ · ‖F is the Frobenius
norm. The considered range for ∆ is [0.002, 0.01], which
corresponds to an SNR between 39 and 25 dB. In the
experiments, we assume to know the signs of the parame-
ters, i.e., whether θi ≥ 0 or θi ≤ 0. This information can
be obtained by using the algorithm proposed in (Fosson
et al., 2020, Section 3.2).

In Fig. 2, we can see that the proposed method Plog im-
proves the accuracy in the variable selection with respect
to P1, for all the considered m and ∆. By looking at false
positive/negative rates, we get that the improvement is
obtained by reducing the false negative rate. This makes
sense, as in the EIV setting, the considered feasible set
is larger than the true one, due to noise; this may yield
too sparse solutions that do not well describe the system,
if the number of measurements m is not sufficient. The
use of the log functional provides a more precise recovery,
which prevents the occurrence of too sparse solutions.

5. CONCLUSION

In this paper, we propose a novel concave approach
to sparse linear system identification in the errors-in-
variables setting. In particular, we focus on the use of a
log functional and we analyze its variable selection consis-
tency. The proposed method is guaranteed to be variable
selection consistent under similar conditions proven for
the classical �1 approach. These conditions are evaluated
through an LP that approximates the original problem.
This LP approximation is tight for the �1 case, while for the
log case it is generally pejorative; thus, an enhancement by
using the log approach is expected. This enhancement is
attested by numerical simulations.
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