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∗ Department of Control and Computer Engineering, Politecnico di
Torino, Italy (e-mail: sophie.fosson@polito.it).

Abstract Boolean quadratic optimization problems occur in a number of applications. Their
mixed integer-continuous nature is challenging, since it is inherently NP-hard. For this motiva-
tion, semidefinite programming relaxations (SDR’s) are proposed in the literature to approx-
imate the solution, which recasts the problem into convex optimization. Nevertheless, SDR’s
do not guarantee the extraction of the correct binary minimizer. In this paper, we present a
novel approach to enhance the binary solution recovery. The key of the proposed method is the
exploitation of known information on the eigenvalues of the desired solution. As the proposed
approach yields a non-convex program, we develop and analyze an iterative descent strategy,
whose practical effectiveness is shown via numerical results.

Keywords: Mixed-integer programming, binary optimization, semidefinite programming
relaxations, low-rank semidefinite programming.

1. INTRODUCTION

Boolean quadratic optimization refers to those minimiza-
tion problems with quadratic cost functional and binary
variables. It is a long-time problem with a number of
applications in different scientific areas. To mention some
examples, it is encountered in maximum cut (MAX-CUT)
problems in graphs, see, Palagi et al. (2012), knapsack
problems, see Kellerer et al. (2004), hybrid model predic-
tive control, see Naik and Bemporad (2017); Bemporad
and Naik (2018), sensor selection, see Shekhar et al. (2014);
Carmi and Gurfil (2013), medical imaging, see Schüle
et al. (2005); Weber et al. (2015), and binary compressed
sensing, see Fosson and Abuabiah (2019).

Boolean quadratic optimization is challenging as it is NP-
hard, even when the cost functional is convex, due to the
integer nature of the variables. To overcome this draw-
back, different relaxations are proposed in the literature
that approximate the correct solution. The most popular
approach consists in the semidefinite programming relax-
ation (SDR), known also as Shor relaxation, introduced by
Shor (1987) and Lovász and Shrijver (1990). In a nutshell,
the key idea at the basis of SDR is to embed the variable
matrix xxT , x ∈ Rn, into the space of n × n symmetric
positive semidefinite matrices. The rationale is that a
complete description of the cone of symmetric positive
semidefinite matrices is available, while this does not hold
for the convex polytope of matrices xxT , as illustrated,
e.g., by Nesterov (1998). The tightness of SDR is analyzed,
e.g., in Goemans and Williamson (1995); Nesterov (1998).

More recently, a substantial evolution on SDR has been
provided by the Lasserre’s theory, which states that the
global optimum of a polynomial optimization problem can
be achieved by solving a hierarchy of SDR’s; we refer the

reader to Lasserre (2001, 2015) for details, and to Lasserre
(2000) for the specific case of quadratic functionals. The-
orem 4.2 in Lasserre (2001) and further elaborations in
Chapter 6 of Lasserre (2015) provide sufficient conditions
to get the global minimum and a global minimizer of
the original problem from an SDR of a certain relaxation
order. As to the Shor relaxation (or equivalently, SDR of
order 1) of a Boolean quadratic problem, if the SDR solu-
tion is 1-rank, then the global minimum is achieved and the
desired binary minimizer can be extracted, as discussed in
Fosson and Abuabiah (2019). For this motivation, methods
to minimize or reduce the rank in semidefinite program-
ming are relevant for SDR; we refer to Lemon et al. (2016)
for a complete overview on the topic. Since the rank min-
imization is an NP-hard problem, the minimization of the
nuclear norm is often exploited, which provides the tightest
convex relaxation of the problem, as proven by Recht et al.
(2010). As to symmetric positive semidefinite matrices, the
nuclear norm is equal to the trace, and in turn to the sum
of the eigenvalues: then, the minimization of the nuclear
norm has a sparsifying effect on the eigenvalues vector, as
the �1-norm is a suitable convex relaxation of the sparsity
a vector, see, e.g., Tibshirani (1996). Then, a nuclear norm
penalty encourages a low-rank solution. Nevertheless, this
method does not apply to some Boolean quadratic prob-
lems, e.g., MAX-CUT, see Lasserre (2016), where the trace
is constant. For these problems, an effective method is the
log-det heuristic, proposed by Fazel et al. (2003).

In this paper, we propose a novel method to enhance SDR
for Boolean quadratic optimization, by supporting 1-rank
solutions. The key idea is to exploit the knowledge of the
eigenvalues of the desired solution are known (in particu-
lar, only one eigenvalue is non-null). Then, we promote 1-
rank solutions by maximizing the energy of the eigenvalues
vector, which we prove to have a sparsifying effect on the
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eigenvalues, when the trace is constant. We illustrate the
proposed approach for two SDR’s, with slightly different
spectral properties. Furthermore, as the method yields a
non-linear and non-convex program, a suitable iterative
descent algorithm is developed to search the global mini-
mum. The overall strategy is analyzed, and its effectiveness
is illustrated through numerical simulations.

The paper is organized as follows. In Sec. 2, we formally
state the problem. In Sec. 3, we present and analyze the
proposed approach. In Sec. 4, we show some numerical
results; finally, we draw some conclusions in Sec. 5.

2. PROBLEM STATEMENT

Let Sn be the space of n × n symmetric matrices, and
Sn+ ⊂ Sn the subspace of positive semidefinite matrices.
We consider Boolean quadratic problems of the kind

min
x∈{0,1}n

xTCx+ 2dTx s. t. Ax = b (1)

where C ∈ Sn, d ∈ Rn, A ∈ Rm,n, and b ∈ Rm. As in
Lasserre (2016), we exploit the Lagrangian formulation

min
x∈{0,1}n

xTCx+ 2dTx+ µ‖Ax− b‖22 (2)

where µ > 0. If µ is sufficiently large, problems (1) and
(2) are equivalent, see Lasserre (2016). By adding a slack
variable x0 = 1 and by redefining x = (1, x1, . . . , xn)

T , we
rewrite (2) as the augmented problem

min
x∈{0,1}n+1

xTQx (3)

where Q =

(
0 dT

d C

)
+ µ(−b|A)T (−b|A). The solution

to this NP-hard problem can be searched by solving the
associated SDR, see Nesterov (1998) for details:

min
X∈Sn+1

+

〈Q,X〉

s. t. X0,0 = 1; Xi,i = X0,i, i = 1, . . . , n.
(4)

The constraint Xi,i = X0,i represents the constraint xi =
x2
i , which holds for any xi ∈ {0, 1}.

An alternative, MAX-CUT approach is studied in Lasserre
(2016): given 1 = (1, . . . , 1)T ∈ Rn+1, by substituting
z = 2x− 1 ∈ {−1, 1}n+1 in (3), we obtain xTQx = 1

4 (z +

1)TQ(z + 1). Then, problem (3) is equivalent to

min
z∈{−1,1}n+1

zTRz (5)

where R = Q+

(
0 1TQ
Q1 0

)
. Problem (5) is a MAX-CUT

problem, and the associated SDR is

min
Z∈Sn+1

+

〈R,Z〉

s. t. Zi,i = 1, i = 0, . . . , n.
(6)

The constraint Zi,i = 1 represents the fact that z2i = 1
whenever zi ∈ {−1, 1}.
The aim of this paper is the recovery of the correct binary
minimizers of problems (3) and (5) by starting from their
SDR’s (4) and (6). As described, e.g, in Lasserre (2016)
and Lemon et al. (2016), the correct binary minimizers
can be extracted if and only if the SDR solutions are 1-
rank. Therefore, we develop a strategy to reduce, possibly

minimize, the rank, by exploiting specific features of the
Boolean setting.

3. CONCAVE PENALIZATION EXPLOITING
INFORMATION ON THE EIGENVALUES

In this section, we develop the proposed strategy to pro-
mote 1-rank solutions to SDR’s (4) and (6). Specifically,
we propose a suitable cost functional, and we illustrate the
algorithms used to minimize it.

3.1 Proposed cost functional

Let us consider SDR (6), and let us call Z� ∈ Sn+1
+ the

desired 1-rank solution. The rank of Z� corresponds to the
number of non-null eigenvalues; thus, the eigenvalues vec-
tor of Z�, denoted as v, is 1-sparse, i.e., v = (v0, 0, . . . , 0),
v0 > 0. We also remark that Z� necessarily has all the
components in {−1, 1}, and 1

2 ((Z
�
0,1, . . . , Z

�
0,n)

T +1) is the
exact minimizer of (2). Recht et al. (2010); Lemon et al.
(2016) show that a sparsifying effect on v can be obtained
by penalizing the trace of the variable Z, hereafter de-
noted as tr(Z), which corresponds to the �1-norm of the
eigenvalues, and, in turn, the �1-norm is a suitable convex
relaxation of the sparsity of a vector. Nevertheless, this
approach is not beneficial for SDR (6), as tr(Z) = n + 1
by construction; therefore, it makes no sense to penalize a
constant quantity.

However, we observe that the information tr(Z�) =∑n
i=0 vi = n+1 can be exploited to state that v0 = n+1.

In other terms, not only we know that v is 1-sparse, but
also that its components belong to the binary alphabet
{0, n + 1}. Then, we wonder how to force the solution to
have v = {n+ 1, 0, . . . , 0}.
The key idea is as follows. Given a vector v ∈ [0, n +
1]n+1 with

∑n
i=0 vi = n + 1, we can force 1-sparsity by

maximizing its energy ‖v‖22. This is straightforward to
check in the two-dimensional case: let us consider (v0, v1) ∈
[0, 2]2 with v0 + v1 = 2; the maximum of v20 + v21 = v20 +
(2− v0)

2 is achieved at the boundaries, that is, at (0, 2) or
(2, 0). This reasoning can be extended to any dimension.

Given this principle, we search a method to maximize
the energy of v within SDR (6). We notice that ‖v‖22 =
tr(ZZ) = 〈Z,Z〉. Then, we propose to add a term that
penalizes −〈Z,Z〉 in the cost functional of (6), i.e.,

min
Z∈Sn+1

+

〈R,Z〉 − λ〈Z,Z〉

s. t. Zi,i = 1, i = 0, . . . , n
(7)

where λ > 0 is a design parameter that can be assessed by
cross-validation. Interestingly, if a global minimizer of (6)
is binary, then, for any λ > 0, the global minimizer of (7)
is exact, as illustrated in the following proposition.

Proposition 1. Let z̃ ∈ {−1, 1}n+1 be the correct solution
to problem (5). Let us assume that SDR (6) has the desired
binary, 1-rank solution z̃z̃T among its global minimizers.
Then, the minimizer of (7) is Z� = z̃z̃T , for any λ > 0.
Moreover, z̃ = (1, Z�

1,0, . . . , Z
�
n,0)

T .

Proof. Since tr(Z) = n + 1, then 〈Z,Z〉 ≤ (n + 1)2. In
particular, the maximum (n+1)2 is achieved if and only if
the eigenvalues of Z are v = (n+ 1, 0, . . . , 0). In this case,



1896 Vito Cerone  et al. / IFAC PapersOnLine 53-2 (2020) 1894–1899

Z is 1-rank, and necessarily Z = z̃z̃T . Moreover, since by
assumption z̃z̃T minimizes 〈R,Z〉, then it is the unique
global minimizer of (7). �

A similar approach can be applied to SDR (4), with a
considerable difference: tr(X) is not priorly set by con-
struction. Then, we proceed by considering two possible
settings.

In the first setting, we assume to know the sparsity level
k of the true solution of problem (3). This implies that
the desired solution to SDR (4) has trace equal to (k +
1)2 and eigenvalues v = (k + 1, 0, . . . , 0). The sparsity
level is known in many applications, e.g., in compressed
sensing, see (Foucart and Rauhut, 2013, Sec. III), or in
sensor selection, where k is the number of used sensors,
see Shekhar et al. (2014). In other cases, an unknown k
can be estimated through ad hoc techniques, see Ravazzi
et al. (2018). Given k, we propose to modify SDR (4) as
follows to leverage the binary nature of the eigenvalues:

min
X∈Sn

+

〈Q,X〉+ λ [(k + 1)tr(X)− 〈X,X〉]

s. t. X0,0 = 1; Xi,i = X0,i, i = 1, . . . , n.
(8)

Proposition 2. Let x̃ ∈ {0, 1}n+1 be the correct solution to
problem (3). Let us assume that SDR (4) has the desired
binary, 1-rank solution x̃x̃T among its global minimizers.
Then, the minimizer of problem (8) is X� = x̃x̃T , for any
λ > 0. Moreover, x̃ = (1, X�

1,0, . . . , X
�
n,0)

T .

Proof. If v is the eigenvalues vector of X, we have

tr(X)− 〈X,X〉 =
n∑

i=1

[(k + 1)vi − v2i ] ≥ 0 (9)

since vi ∈ [0, k + 1] for each i = 1, . . . , n. Moreover,
tr(X) − 〈X,X〉 = 0 ⇐⇒ vi ∈ {0, k + 1} for each
i = 1, . . . , n. Then, we can conclude that the global
minimum is achieved for v ∈ {0, k + 1}n+1. Eventually,
since

∑n
i=1 vi = k+1, we have v = (k+1, 0, . . . , 0), which

implies the 1-rank solution, and X� = x̃x̃T . �

In the second setting, we assume that k is unknown. In this
case, we propose to replace k by n ≥ k. This approximate
procedure takes a larger weight on the term tr(X), which
might be advantageous when k � n: in fact, in this setting,
not only tr(X�) =

∑n+1
i=1 vi, but also tr(X

�) = 1+
∑n

i=1 x
�
i ,

where x� ∈ [0, 1]n is the final estimation of x̃, extracted
from the diagonal of X�: x� = (X�

1,1, . . . , X
�
n,n)

T . In
conclusion, by penalizing tr(X) we obtain a sparsifying
effect both on the eigenvalues and on the solution; for this
motivation, we expect better performance when k � n.

Remark 1. The considered problem bears some similar-
ities with phase retrieval from Fourier transform magni-
tude, see, e.g., Jaganathan et al. (2013, 2017). An ef-
fective approach to phase retrieval is the embedding of
the unknown vector x into a higher dimensional space
by the transformation X = xxT . This approach, called
lifting, shares the same principle of the SDR’s illustrated
in this paper. Similarly to the MAX-CUT problem, the
penalization of the trace is not effective for phase retrieval,
as the energy of x is fixed, see (Jaganathan et al., 2013, Sec.
III). In Jaganathan et al. (2013), this issue is overcome by
penalizing the term log det(X+ εI), where ε > 0 is a small
design parameter necessary for boundedness. This term

is a concave surrogate of the rank, whose effectiveness is
discussed in Fazel et al. (2003). Our approach consists in a
concave penalization as well. However, differently from the
log-det heuristic, it exploits the known binary eigenvalues;
moreover, its practical implementation is computationally
less complex, as illustrated in Remark 2.

3.2 Descent algorithms

Problems (8) and (7) are well posed, that is, their unique
global minima are the correct binary solutions. However,
they introduce the concave term −〈X,X〉, which makes
the problem non-linear and non-convex. For this motiva-
tion, we propose an iterative descent algorithm to search
the minimum, which, although sub-optimal, is effective in
practice. The idea is to replace the concave term 〈X,X〉
with 〈G,X〉, where G is an available estimate of X. By as-
suming G fixed, the penalty is linear in X, then the whole
cost functional is linear. Then, we propose an iterative
procedure: we start from an initial estimate of the solution,
denoted by X0, which can be assessed, for example, by
solving the non-penalized problems (4) and (6); in turn, we
solve the penalized problems until convergence is reached.
The overall procedure is summarized in algorithms 1 and
2 for problems (8) and (7), respectively . In Algorithm 1,
h is equal to k + 1 when k is known, and n+ 1 otherwise.

Algorithm 1 Descent algorithm for Problem (8)

Input: Q, λ > 0;
1: X0 = solution of (4)
2: for all t = 1, . . . , T do
3: Xt = argmin

X∈Sn+1
+

〈Q,X〉+λ [htr(X)− 〈Xt−1, X〉], s. t.

X0,0 = 1, Xi,i = X0,i, i = 1, . . . , n
4: end for

Algorithm 2 Descent algorithm for Problem (7)

Input: Input: R, λ > 0;
1: X0 = solution of (6)
2: for all t = 1, . . . , T do
3: Xt = argmin

X∈Sn+1
+

〈R,X〉 − λ〈Xt−1, X〉, s. t. Xi,i = 1,

i = 0, . . . , n
4: end for

In this way, we solve a sequence of semidefinite pro-
gramming problems. This is not guaranteed to get the
global minimum, while it is guaranteed to provide a non-
increasing cost functional sequence.

Proposition 3. Let us define f(X) := 〈Q,X〉 + λhtr(X)
from (8) (respectively, f(X) := 〈R,X〉 in (7)), and
F (Xt) := f(Xt)− λ

2 〈Xt, Xt〉.
By applying Algorithm 1 (respectively, Algorithm 2),
F (Xt) is a non-increasing function.

Proof. Since Xt is the minimizer,

f(Xt)− λ〈Xt−1, Xt〉 ≤ f(Xt−1)− λ〈Xt−1, Xt−1〉. (10)

On the other hand, if A,B ∈ Sn+, then 2〈A,B〉 ≤
〈A,A〉+ 〈B,B〉, see, e.g., Zhou (2014). Therefore, for any
t, 2〈Xt−1, Xt〉 − 〈Xt−1, Xt−1〉 ≤ 〈Xt, Xt〉, which implies
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Z is 1-rank, and necessarily Z = z̃z̃T . Moreover, since by
assumption z̃z̃T minimizes 〈R,Z〉, then it is the unique
global minimizer of (7). �

A similar approach can be applied to SDR (4), with a
considerable difference: tr(X) is not priorly set by con-
struction. Then, we proceed by considering two possible
settings.

In the first setting, we assume to know the sparsity level
k of the true solution of problem (3). This implies that
the desired solution to SDR (4) has trace equal to (k +
1)2 and eigenvalues v = (k + 1, 0, . . . , 0). The sparsity
level is known in many applications, e.g., in compressed
sensing, see (Foucart and Rauhut, 2013, Sec. III), or in
sensor selection, where k is the number of used sensors,
see Shekhar et al. (2014). In other cases, an unknown k
can be estimated through ad hoc techniques, see Ravazzi
et al. (2018). Given k, we propose to modify SDR (4) as
follows to leverage the binary nature of the eigenvalues:

min
X∈Sn

+

〈Q,X〉+ λ [(k + 1)tr(X)− 〈X,X〉]

s. t. X0,0 = 1; Xi,i = X0,i, i = 1, . . . , n.
(8)

Proposition 2. Let x̃ ∈ {0, 1}n+1 be the correct solution to
problem (3). Let us assume that SDR (4) has the desired
binary, 1-rank solution x̃x̃T among its global minimizers.
Then, the minimizer of problem (8) is X� = x̃x̃T , for any
λ > 0. Moreover, x̃ = (1, X�

1,0, . . . , X
�
n,0)

T .

Proof. If v is the eigenvalues vector of X, we have

tr(X)− 〈X,X〉 =
n∑

i=1

[(k + 1)vi − v2i ] ≥ 0 (9)

since vi ∈ [0, k + 1] for each i = 1, . . . , n. Moreover,
tr(X) − 〈X,X〉 = 0 ⇐⇒ vi ∈ {0, k + 1} for each
i = 1, . . . , n. Then, we can conclude that the global
minimum is achieved for v ∈ {0, k + 1}n+1. Eventually,
since

∑n
i=1 vi = k+1, we have v = (k+1, 0, . . . , 0), which

implies the 1-rank solution, and X� = x̃x̃T . �

In the second setting, we assume that k is unknown. In this
case, we propose to replace k by n ≥ k. This approximate
procedure takes a larger weight on the term tr(X), which
might be advantageous when k � n: in fact, in this setting,
not only tr(X�) =

∑n+1
i=1 vi, but also tr(X

�) = 1+
∑n

i=1 x
�
i ,

where x� ∈ [0, 1]n is the final estimation of x̃, extracted
from the diagonal of X�: x� = (X�

1,1, . . . , X
�
n,n)

T . In
conclusion, by penalizing tr(X) we obtain a sparsifying
effect both on the eigenvalues and on the solution; for this
motivation, we expect better performance when k � n.

Remark 1. The considered problem bears some similar-
ities with phase retrieval from Fourier transform magni-
tude, see, e.g., Jaganathan et al. (2013, 2017). An ef-
fective approach to phase retrieval is the embedding of
the unknown vector x into a higher dimensional space
by the transformation X = xxT . This approach, called
lifting, shares the same principle of the SDR’s illustrated
in this paper. Similarly to the MAX-CUT problem, the
penalization of the trace is not effective for phase retrieval,
as the energy of x is fixed, see (Jaganathan et al., 2013, Sec.
III). In Jaganathan et al. (2013), this issue is overcome by
penalizing the term log det(X+ εI), where ε > 0 is a small
design parameter necessary for boundedness. This term

is a concave surrogate of the rank, whose effectiveness is
discussed in Fazel et al. (2003). Our approach consists in a
concave penalization as well. However, differently from the
log-det heuristic, it exploits the known binary eigenvalues;
moreover, its practical implementation is computationally
less complex, as illustrated in Remark 2.

3.2 Descent algorithms

Problems (8) and (7) are well posed, that is, their unique
global minima are the correct binary solutions. However,
they introduce the concave term −〈X,X〉, which makes
the problem non-linear and non-convex. For this motiva-
tion, we propose an iterative descent algorithm to search
the minimum, which, although sub-optimal, is effective in
practice. The idea is to replace the concave term 〈X,X〉
with 〈G,X〉, where G is an available estimate of X. By as-
suming G fixed, the penalty is linear in X, then the whole
cost functional is linear. Then, we propose an iterative
procedure: we start from an initial estimate of the solution,
denoted by X0, which can be assessed, for example, by
solving the non-penalized problems (4) and (6); in turn, we
solve the penalized problems until convergence is reached.
The overall procedure is summarized in algorithms 1 and
2 for problems (8) and (7), respectively . In Algorithm 1,
h is equal to k + 1 when k is known, and n+ 1 otherwise.

Algorithm 1 Descent algorithm for Problem (8)

Input: Q, λ > 0;
1: X0 = solution of (4)
2: for all t = 1, . . . , T do
3: Xt = argmin

X∈Sn+1
+

〈Q,X〉+λ [htr(X)− 〈Xt−1, X〉], s. t.

X0,0 = 1, Xi,i = X0,i, i = 1, . . . , n
4: end for

Algorithm 2 Descent algorithm for Problem (7)

Input: Input: R, λ > 0;
1: X0 = solution of (6)
2: for all t = 1, . . . , T do
3: Xt = argmin

X∈Sn+1
+

〈R,X〉 − λ〈Xt−1, X〉, s. t. Xi,i = 1,

i = 0, . . . , n
4: end for

In this way, we solve a sequence of semidefinite pro-
gramming problems. This is not guaranteed to get the
global minimum, while it is guaranteed to provide a non-
increasing cost functional sequence.

Proposition 3. Let us define f(X) := 〈Q,X〉 + λhtr(X)
from (8) (respectively, f(X) := 〈R,X〉 in (7)), and
F (Xt) := f(Xt)− λ

2 〈Xt, Xt〉.
By applying Algorithm 1 (respectively, Algorithm 2),
F (Xt) is a non-increasing function.

Proof. Since Xt is the minimizer,

f(Xt)− λ〈Xt−1, Xt〉 ≤ f(Xt−1)− λ〈Xt−1, Xt−1〉. (10)

On the other hand, if A,B ∈ Sn+, then 2〈A,B〉 ≤
〈A,A〉+ 〈B,B〉, see, e.g., Zhou (2014). Therefore, for any
t, 2〈Xt−1, Xt〉 − 〈Xt−1, Xt−1〉 ≤ 〈Xt, Xt〉, which implies

F (Xt) ≤ f(Xt)− λ〈Xt−1, Xt〉+
λ

2
〈Xt−1, Xt−1〉

≤ f(Xt−1)− λ〈Xt−1, Xt−1〉+
λ

2
〈Xt−1, Xt−1〉

≤ F (Xt−1)−
λ

2
〈Xt−1, Xt−1〉+

λ

2
〈Xt−1, Xt−1〉

= F (Xt−1).

�

Furthermore, if the proposed approach achieves a binary
solution, by uniqueness it is guaranteed that this is ex-
actly the desired global minimum. Conversely, when the
obtained solution is not 1-rank, the final solution is not
binary and it is guaranteed that it is not the correct solu-
tion. This awareness about achieving the correct solution
provides the possibility of running again the algorithm
by suitably changing the initialization, which may yield
a better solution.

Remark 2. The proposed descent strategy can be inter-
preted as a reweighting algorithm. In Jaganathan et al.
(2013); Fazel et al. (2003), the reweighting algorithm is
derived as iterative minimization of the local linearization
of the concave log-det term. The convergence of the log-
det method to a local minimum is discussed in Fazel et al.
(2003). We mention that the proposed descent algorithm
can be described under the reweighting viewpoint as well,
and results from Fazel et al. (2003); Fosson (2018a) might
be leverage to rigorously prove its convergence. The con-
vergence analysis and a complete comparison to log-det
heuristic are beyond the scope of this paper; however, some
numerical comparisons are proposed in Sec. 4.

4. NUMERICAL RESULTS

In this section, we illustrate some numerical results, that
support the effectiveness of the proposed approach. We
consider the following problem, as presented in Fosson and
Abuabiah (2019): we aim to solve the underdetermined
system

b = Ax, x ∈ {0, 1}n, b ∈ Rm, A ∈ Rm,n, m < n (11)

under the assumption that the solution is unique in
{0, 1}n. This linear problem is encountered in a number of
applications, ranging from compressed sensing, see Flinth
and Kutyniok (2018); Fosson (2018b, 2019) to tomography,
see Schüle et al. (2005); Weber et al. (2015).

In Fosson and Abuabiah (2019), problem (11) is tackled
in case of sparse x, which recasts into binary compressed
sensing, and a Shor SDR is proposed to solve it. In previous
works, other methods for binary compressed sensing are
proposed, namely, relaxation over the convex hull in Flinth
and Kutyniok (2018), �1-reweighting algorithms in Fosson
(2018b), alternating direction method of multipliers in
Fosson (2019), and difference of convex functions in Schüle
et al. (2005); Weber et al. (2015). SDR is shown to achieve
better accuracy in Fosson and Abuabiah (2019).

Here, we recast problem (11) into Boolean quadratic
optimization by replacing the constraint Ax = b with the
the cost functional ‖Ax−b‖22. As we know that x̃ ∈ {0, 1}n
is solution of Ax = b, the global minimum is null. Given,
the cost functional ‖Ax− b‖22, we homogenize it by adding
the slack variable x0 = 1, so that ‖Ax−x0b‖22 = xTQx with

Q = (−b|A)T (−b|A), and x = (x0, x1, . . . , xn)
T . Then, we

can apply the approach developed in Sec. 3.

Specifically, we compare the recovery accuracy of the
proposed “known binary eigenvalues” (KBE) approach to
the following known methods: SDR (4) and SDR (6),
nuclear norm heuristic, and log-det heuristic, see Fazel
et al. (2003); Lemon et al. (2016). The implemented
nuclear norm and log-det algorithms read as follows,
respectively:

min
X∈Sn+1

+

〈Q,X〉+ λtr(X)

s. t. X0,0 = 1, Xi,i = X0,i, i = 1, . . . , n
(12)

and, for t = 1, . . . , T ,

Xt = argmin
X∈Sn+1

+

〈Q,X〉+ λ〈(Xt−1 + εI)−1, X〉

s. t. X0,0 = 1, Xi,i = X0,i, i = 1, . . . , n.

(13)

The considered setting is a follows. We take binary vectors
x̃ ∈ {0, 1}n, with n = 50, sparsity level k ∈ [5, 45], and
uniformly distributed support. A is a random Gaussian
matrix with m rows, with m ∈ [14, 34]. For all the meth-
ods, λ = 10−4, and T = 3. Algorithms 1 and 2, and log-det
heuristic (13) are initialized with the solutions of SDR’s
(4) and (6). If a binary solution is not achieved, i.e., the
algorithm stops in a local minimum or saddle point, we
randomly reinitialize for a maximum of 5 times. In (13),
we set ε = 10−6. To solve the involved SDR’s, we use
the Mosek C++ Fusion API, see MOSEK (2019), which
guarantees fast solutions even for quite large dimensional
problems. For reasons of space, a complete analysis of the
complexity and large-scale experiments are left for future
work. We just remark that the matrix inversion in the log-
det heuristic yields an higher computational complexity
when compared to Algorithms 1 and 2, and might be
prohibitive in large-scale problems. The considered algo-
rithms are compared in terms of exact recovery rate, i.e.,
the number of experiments where a perfect recovery is
achieved. Results are averaged over 200 random runs. As
SDR’s (4) and (6) are different formulations of the same
problem, they are conveyed in the same graph.

In Fig. 1, we show the case of unknown k. We observe
that Algorithm 2 increases the success rate with respect to
SDR’s (4)-(6). Specifically, KBE - Algorithm 2 has a tran-
sition phase from low to high recovery rate (namely, from
60% to 90%, highlighted by red color in the figure) with
less measurements than SDR’s (4)-(6):m ∈ [24, 26] instead
of m ∈ [26, 28]. We remark that these two methods have
approximately constant performance in k. In contrast, as
discussed above, the nuclear norm and log-det heuristics as
well as KBE - Algorithm 1 penalize the trace, hence they
have a sparsifying effect that makes them favorable when
k is small. Among them, the proposed KBE - Algorithm
1 generally achieves the best performance. In conclusion
KBE - Algorithm 1 is the most reliable approach in non
sparse problems, while KBE - Algorithm 2 is the most
reliable approach for sparse problems. This attests that
the KBE methodology is effective.

In Fig. 2, the same experiment is reported in case of known
k. As discussed in Sec. 3, Algorithm 1 can specifically
exploit the information on k. Moreover, the equation
1Tx = k is added to Ax = b for all the methods. In
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Figure 1. Experiment 1 (unknown k): exact recovery rate.
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Figure 2. Experiment 2 (known k): exact recovery rate.
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Figure 1. Experiment 1 (unknown k): exact recovery rate.
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Figure 2. Experiment 2 (known k): exact recovery rate.

Fig. 2, we observe that, as expected, all the methods take
advantage of the knowledge of k, in particular when k is
either very small or very large k. Also in this experiment,
we observe that the proposed KBE Algorithms 1-2 are
more accurate than the other methods. In particular, they
are successful in at least 99% of runs when m ≥ 30, which
is not achieved by the competitors.

Finally, we observe that, in our experiments, the run-time
is between 0.1 and 0.8 seconds for KBE Algorithms 1-2,
and between 0.2 and 1.4 seconds for the log-det heuristic.

5. CONCLUSION

Semidefinite programming relaxations of Boolean quadratic
problems provide the right minimizer if a 1-rank solution
is found; nevertheless, enforcing low-rank solutions is NP-
hard. In this paper, we tackle this drawback by leveraging
known information on the eigenvalues. The global mini-
mum of the proposed cost functional is proven to be the
exact solution. A low-complex descent algorithm is devel-
oped to estimate the minimum, and shown to be effective
through numerical results. Future work will envisage a for-
mal proof of the convergence of the proposed algorithms,
and the development of different descent techniques, with
particular focus on large scale problems.
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