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Abstract— Set-membership identification algorithms have
been recently proposed to derive linear parameter-varying
(LPV) models in input-output form, under the assumption
that both measurements of the output and the scheduling
signals are affected by bounded noise. In order to use the
identified models for controller synthesis, linear time-invariant
(LTI) realization theory is usually applied to derive a state-
space model whose matrices depend statically on the scheduling
signals, as required by most of the LPV control synthesis
techniques. Unfortunately, application of the LTI realization
theory leads to an approximate state-space description of the
original LPV input-output model. In order to limit the effect
of the realization error, a new set-membership algorithm for
identification of input/output LPV models is proposed in the
paper. A suitable nonconvex optimization problem is formulated
to select the model in the feasible set which minimizes a suitable
measure of the state-space realization error. The solution of
the identification problem is then derived by means of convex
relaxation techniques.

Index Terms— Convex relaxation, LPV models, LPV realiza-
tion theory, Set-membership identification.

I. INTRODUCTION

Linear parameter-varying (LPV) models have received a
major attention from the identification and control commu-
nity in the last two decades, mainly due to the strong link
between gain scheduling control design and the concept of
LPV control synthesis, which is now recognized as one of
the most effective techniques for controlling a large class of
nonlinear systems (see, e.g., the survey papers [1], [2] and
the references therein). Roughly speaking, LPV models are
linear systems where the coefficients of the representation
(either the matrices of the state equations or the coefficients
of the difference equation relating the input and the output
signals) depend on some time-varying parameters/exogenous
variables, commonly called scheduling signals. Real-time
measurements of such signals are commonly assumed to
be available. As to the identification of black-box LPV
models from input-output measurements, a relevant number
of approaches can be found in the literature like, for example,
recursive [3] and separable [4] least squares methods, sub-
space identification [5], orthonormal basis function approach
[6], instrumental variables methods [7] and many more. The
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readers are referred to the recent book [8] for a detailed
overview of the available LPV modeling and identification
approaches.

This paper focuses on a set-membership (SM) approach for
the identification of LPV systems, recently proposed in [9],
[10], [11], where input-output (I/O) models are considered
under the assumption that both the measurements of the
output and the scheduling signals are corrupted by bounded
noise. In this framework, all parameters belonging to the
feasible parameter set (FPS), i.e., parameters consistent with
the measurements, the error bounds and the assumed model
structure, are feasible solutions to the identification problem.
A detailed discussion on the properties of the feasible pa-
rameter set for LPV systems given in I/O form is presented
in [11], where it is shown that the FPS is a nonconvex
semialgebraic set. Relaxation techniques are proposed in [9]
and [11] to derive convex outer approximations of the FPS
and to compute guaranteed bounds on the system parameters.

The SM identification approach has been proven to be
an effective technique to obtain LPV models of complex
nonlinear systems (see, e.g., the application example of a
real-world automotive system in [10]). However, most LPV
control synthesis approaches require models in state-space
(SS) form, where the matrices describing the state-space
equations depend statically on the scheduling signals. Unfor-
tunately, exact SS realization of identified LPV I/O models
requires system matrices which do not depend only on the
current value of the scheduling signal but also on a number
of its past samples (dynamic dependence), as proved in [12].
The problem of dynamic dependence is usually bypassed by
applying the linear time-invariant (LTI) realization theory to
the identified LPV I/O model (see, e.g., [13]). Although this
approach has the advantage of providing a model in a form
which is suitable for LPV control synthesis, the obtained
SS realization is not exact, and the introduced realization
error might cause significant performance degradation of the
designed control system. The aim of this work is to provide
a systematic way to bridge the gap between SM LPV model
identification and LPV control synthesis. More precisely, a
new identification algorithm is proposed to select, among
the LPV I/O models belonging to the FPS, the one which
minimizes a suitable measure of the state-space realization
error obtained via the LTI realization theory.

The paper is organized as follows. The set-membership
identification approach for LPV I/O models proposed in [9],
[11] is briefly reviewed in Section II. The novel identification
problem, considered in this paper, is introduced in Section
III, while technical details and properties of the proposed



identification algorithm are discussed in Section IV. A sim-
ulation example is provided in Section V to demonstrate the
effectiveness of the presented identification scheme. The final
concluding remarks are given at the end of the paper.

II. SET-MEMBERSHIP LPV IDENTIFICATION

Consider a SISO discrete-time LPV model described in
terms of the following linear difference equations

A(q−1, λ(t))w(t) = B(q−1, λ(t))u(t), (1a)

A(q−1, λ(t))η(t) = D(q−1, λ(t))e(t), (1b)

y(t) = w(t) + η(t), (1c)

z(t) = λ(t) + ε(t), (1d)

where q−1 is the backward time-shift operator, i.e.,
q−1w(t) = w(t − 1), u(t) : Z → R is the input signal,
w(t) : Z → R is the noise-free output signal, y(t) : Z → R

is the measured output signal, e(t) : Z → R is a bounded
noise, η(t) : Z → R is the effect of the noise e(t) on the
measured output signal, λ(t) : Z → R

μ is the scheduling
variable which, according to the LPV modeling and con-
trol literature (see, e.g., [1]) is assumed to be measurable,
z(t) : Z → R

μ is the measured scheduling signal, while
ε(t) : Z → R

μ is a bounded noise corrupting the scheduling
signal measurements. In order to simplify the notation, in
the sequel, the following shorthand form is adopted for a
generic signal πt � π(t). The functions A(·), B(·) and
D(·) are polynomials in the backward-shift operator q−1 and
described as

A(q−1, λt)=1 + a1(λt)q−1 + . . .+ ana(λt)q
−na (2a)

B(q−1, λt)=b0(λt) + b1(λt)q−1+ . . .+ bnb(λt)q−nb (2b)

D(q−1, λt)=d0(λt) + d1(λt)q−1+ . . .+ dnd(λt)q−nd (2c)

where na, nb, nd ≥ 0 and the coefficients ai, bj and dl are
assumed to be static functions of λt, parameterized in the
form

ai(λt) =
nφ,i∑
s=1

ai,sφi,s(λt), bj(λt) =
nψ,j∑
s=1

bj,sψj,s(λt), (3a)

dl(λt) =
nσ,l∑
s=1

dl,sσl,s(λt), (3b)

where φi,s(·), ψj,s(·) and σl,s(·) are a priori chosen nonlinear
basis functions bounded on R

μ. In the sequel, it is assumed
that these basis functions belong to the canonical polynomial
basis in the parameters λt, and we denote as dφi,s , dψj,s and
dσl,s the degrees of φi,s(·), ψj,s(·) and σl,s(·), respectively.

It is worth noting that the model considered in (1a)-(1d)
is a quite general one since a number of widely adopted
model structures can be obtained by properly constraining the
polynomials A, B and D. In fact, the ARX model structure
is obtained by setting D = 1, the output-error (OE) is given
by the choice D = A, while the case A �= B �= D leads to
the more general ARMAX structure, see [8] for details.

According to the set-membership framework, the noise et
and each component of the noise vector εt are assumed to
range within given bounds Δe and Δεi respectively, i.e.,

et ∈ Ee = {et ∈ R : |et| ≤ Δe} , (4a)

εt ∈ Eε = {εt ∈ R
μ : |[εt]i| ≤ Δεi, i = 1, 2, . . . , μ} . (4b)

The underlaying distributions of these random variables are
assumed to be arbitrary. The unknown parameter vector θ ∈
R
nθ to be estimated is defined as

θ = [ a1,1 . . . a1,nφ,1 . . . ana,1 . . . ana,nφ,na

b0,1 . . . bnb,nψ,nb
d0,1 . . . dnd,nσ,nd

]�, (5)

where nθ =
∑na
i=1nφ,i+

∑nb
j=0nψ,j +

∑nd
l=0nσ,l. In the con-

text of set-membership identification, all parameter values
consistent with the collected measurements, a-priori infor-
mation on the system, and the error bounds are considered
as feasible solutions of the identification problem. The set of
all such parameter values is called the feasible parameter set
Dθ ⊂ R

nθ which is the projection on the parameter space
of the set D of model parameters θ, noise samples et and εt
consistent with the measured data sequence in terms of the
assumed model structure and error bounds. More precisely,
these relations are described by equations (1a)-(1d), giving

D =
{

(θ, e, ε) ∈ R
nθ × R

N × R
μ×N :

A(q−1, zt − εt)yt = B(q−1, zt − εt)ut + D(q−1, zt − εt)et

εt ∈ Eε, et ∈ Ee, t = 1, . . . , N
}
, (6)

where N is the length of the data sequence. Algorithms
which can derive an outer bounding box of D are discussed
in [9] and [11].

III. STATE-SPACE REALIZATION-ORIENTED SELECTION

OF A SINGLE MODEL FROM THE FEASIBLE SET

The mainstream LPV control synthesis techniques avail-
able in literature are based on the following state-space
representation:

x(t+ 1) = A(λt)x(t) +B(λt)u(t), (8a)

w(t) = C(λt)x(t) +D(λt)u(t), (8b)

where the entries of matrices A,B,C,D are static functions
of the scheduling parameter λ. As the feasible parameter set
Dθ is defined w.r.t. the LPV input-output (IO) representation
(1a), the identified LPV-IO model can be used for control
synthesis, provided that it is converted into an equivalent
SS representation. Unfortunately, as shown in [12], exact
state-space realization leads to an LPV-SS model with a
dynamic dependence of A,B,C,D on λ, thus increasing
complexity of the control synthesis. Indeed, an approximate
SS realization of the I/O model (1a) with static dependence
of A,B,C,D on the scheduling parameter is to be preferred
in order to use common LPV control design tools [14].

The LPV-IO model (1a) with na ≥ nb is usually converted
to the so-called companion-reachability canonical SS repre-
sentation given by (7), where d = b0 and cj = bj − ajb0



[
A(λt) B(λt)
C(λt) D(λt)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1(λt) −a1(λt) . . . −ana−1(λt) −ana(λt) 1
1 0 . . . . . . 0 0

0
. . .

. . .
. . . 0

...
...

. . .
. . . 0

...
...

0 . . . 0 1 0 0
c1(λt) . . . . . . . . . cna(λt) d(λt)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

and when nb < na, then bj = 0 for j > nb. Indeed,
because of the static dependence of matrixes A,B,C,D on
the scheduling parameter, this is only an approximation of
the true I/O realization (1a) (see [8]). Note that using a non-
minimal SS “realization” with a state vector

x(t)=
[
y(t− 1) . . . y(t− na) u(t− 1) . . . u(t− nb)

]�
avoids dynamic dependency, but on the expense of alterating
the behavior of the system by introducing a delay.

In [14], the following index J is proposed to measure the
approximation error of LTI-type realizations like (7):

J = sup
λ∈P

‖ [g0 . . . gna ]
� − [ĝ0 . . . ĝna ]

� ‖∞, (9)

where {gi}na
i=0 are the first na Markov parameters of the

exact state-space realization, while {ĝi}na
i=0 are the Markov

parameters corresponding to the approximate LTI-like SS-
realization and P ∈ P

Z is the set of admissible trajectories
of λ. Therefore, in order to derive a suitable model for
controller design, we select the parameter value θ∗ ∈ Dθ

which minimizes the worst-case approximation error in terms
of J .

IV. COMPUTATION OF θ∗ AND RELATED DISCUSSION

Let us first define the set Pid of all the trajectories (and
their time-shifted copies) taken by the scheduling parameter
λ during the experiments performed to collect data for
identification. Then, θ∗ can be computed by solving the
following optimization problem:

θ∗id = arg min
θ∈Dθ

Jpid, (10)

where Jpid can be either

J∞
id = sup

λ∈Pid

‖ [g0 . . . gna ]
� − [ĝ0 . . . ĝna ]

� ‖∞, (11)

for p = ∞ or

Jpid = sup
λ∈Pid

‖ [g0 . . . gna ]
� − [ĝ0 . . . ĝna ]

� ‖pp, (12)

where ‖ · ‖p can be any p-norm with p = 1, 2, . . .. Let
us denote the minimum of the functional Jpid(θ∗id) as J̃pid.
Problem (10) is a polynomial optimization problem since it
enjoys the following properties:

Property 1: The functionals J∞
id and Jpid are polynomial

functions of θ.
Property 2: The constraints defining the FPS Dθ are

polynomial functions in the unknown model parameters θ
and noise samples et and εt.

Property 1 follows from the definition of the Markov
parameters g0, . . . ,gna (see [14] for details), while Property
2 follows from the structure of the set D in (6) (see [9], [11]
for details).

Although problem (10) is nonconvex in general, a hierar-
chy of relaxed semidefinite (SDP) programming problems
can be constructed (in the spirit of [15]) whose optima
are guaranteed to converge to the global optimum of (10).
Solution of such relaxed problems can be computed by using
standard SDP solvers like SeDuMi [16].

Remark 1: Although the proposed convex relaxation ap-
proach is guaranteed to converge to the global minimum
of the original nonconvex problem (10), its implementation
is computationally intractable for problems with medium
to large dimension. However, accepting a certain degree of
conservativeness in the computation of the minimum J̃pid, the
computational burden can be significantly reduced by using
the convex outer approximations of D proposed in [9] and
[11]. �

Remark 2: The particular model associated with the iden-
tified parameter θ∗id guarantees the minimum worst case
realization error Jid computed over the set of the scheduling
parameter trajectories Pid covered in the collected data.
Given θ∗id we can formulate the problem of evaluating
the worst-case realization error J corresponding to such a
parameter over the set of all scheduling parameter trajectories
of finite length [λ(t) λ(t− 1) . . . λ(t− na)] ∈ Λ ⊂ R

na+1,
where Λ is an hypercube in the space of the finite scheduling
sequences [λ(t) λ(t − 1) . . . λ(t − na)]. The problem can
be written as follows:

Jpwc = sup
λ∈Λ

‖ [g0 . . . gna ]
� − [ĝ0 . . . ĝna ]

� ‖pp, (13)

where the Markov parameters corresponding to both the ex-
act and the approximated LTI-like state-space realization are
computed for θ = θ∗id. Because of the polynomial objective
function, (13) is again a semialgebraic optimization problem
whose global optimum Jwc can be approximated through
the SDP relaxations discussed above. In this way, an upper
bound on the global optimum Jwc can be computed. Such
an upper bound complements the lower bound computed by
means of the gridding approach proposed in [14]. �

On the basis of the properties of D, we can also compute
an upper bound on the simulation error of the identified SS-
LPV model. Denote by y = [y1 y2 . . . yN ] the output
sequence collected in the identification experiment and by
w = [w1 w2 . . . wN ] the corresponding noise-free sequence.
Define ŵSS as the output sequence of the LTI-like state-
space realization of the identified I/O system (corresponding



to θ∗id). Assume that ŵSS is obtained by simulating the
state-space system under the same conditions considered in
the identification experiment (i.e. same input sequence u =
[u1 u2 . . . uN ], zero initial conditions and same scheduling
parameter trajectories). The following results holds.

Result 1: Assume that the system to be identified is
asymptotically stable and belongs to the model class de-
scribed by equations (1a)-(1d) with D = 1 (OE structure).
The following statements hold:

R1: ‖w − ŵSS‖∞ ≤ 2Δe+ J̃∞
id ‖u‖1 + γ∞‖u‖1

R2: ‖w − ŵSS‖∞ ≤ 2Δe+ J̃1
id‖u‖∞ + γ1‖u‖∞

where γ∞ ≥ 0 and γ1 ≥ 0 are bounded coefficients
determined by the LPV system associated with θ∗id and the
approximation error J̃∞

id and J̃1
id respectively.

Proof

‖w − ŵSS‖∞ = ‖y − e− ŵSS‖∞
≤ ‖y − ŵSS‖∞ + Δe
= ‖y − ŵIO + ŵIO − ŵSS‖∞ + Δe
≤ ‖y − ŵIO‖∞ + ‖ŵIO − ŵSS‖∞ + Δe
≤ 2Δe+ ‖ŵIO − ŵSS‖∞. (14)

Now let us assume, without loss of generality, that ‖ŵIO −
ŵSS‖∞ = |ŵIO(t) − ŵSS(t)|, i.e., the t-th element of
the vector ŵIO − ŵSS = [ŵIO(1) − ŵSS(1) ŵIO(2) −
ŵSS(2) . . . ŵIO(N) − ŵSS(N)] is the one which has the
maximum absolute value. Indeed,

|ŵIO(t) − ŵSS(t)| =
∣∣∣∣
t∑
l=0

(
gl(t) − ĝl(t)

)
u(t− l)

∣∣∣∣. (15)

The latter can also be written as |Δt
0g(t)[u(t) . . . u(0)]�|

by introducing the following operator:

Δs
τg(t)

.= [gτ (t) − ĝτ (t) . . . gs(t) − ĝs(t)], (16)

with s ≥ τ ≥ 0. By using Hölders’ inequality (see, e.g.,
[17]):

|Δt
0g(t)[u(t) . . . u(0)]�| ≤ ‖Δt

0g(t)‖∞‖[u(t) . . . u(0)]‖1

(17)
Since by construction ‖Δt

0g(t)‖∞ ≤ J̃∞
id if t ≤ na, we get

|Δt
0g(t)[u(t) . . . u(0)]�| ≤ J̃∞

id ‖u‖1. (18)

In case t > na, then

‖Δt
0g(t)‖∞ ≤ ‖Δna

0 g(t)‖∞ + ‖ΔN
na+1g(t)‖∞, (19)

as there are at most N > 0 data points. Following the same
reasoning, it can be concluded that

|Δt
0g(t)[u(0) . . . u(t)]�| ≤ J̃∞

id ‖u‖1+‖ΔN
na+1g(t)‖∞‖u‖1.

(20)
Denote ‖ΔN

na+1g(t)‖∞ as γ∞. As the impulse responses
{gi(t)}∞i=0 and {ĝi(t)}∞i=0 belong to an asymptotically sta-
ble LPV system, hence there exist finite real numbers

α, α̂, β, β̂ > 0, such that for all possible scheduling trajecto-
ries λ ∈ (Rμ)Z, i ∈ Z

+
0 and t ∈ Z:

|gi(t)| ≤ βe−
1
α i, |ĝi(t)| ≤ β̂e−

1
α̂ i. (21)

Consider that α, α̂, β and β̂ are the minimum values such
that the above inequalities are satisfied. In this case α
and α̂ correspond to the worst-case “time constants” of
the corresponding systems and are determined by the first
na + 1 Markov parameters, i.e., {gi(t)}na

i=0 and {ĝi(t)}na
i=0.

The latter means that in case of a good approximation of
{gi(t)}na

i=0 by {ĝi(t)}na
i=0, these bounding parameters must

be very close, i.e., βe−
1
α i ≈ βe−

1
α̂ i. From (21) it follows

that

0 ≤ |Δi
ig(t)| ≤ βe−i/α + β̂e−i/α̂ ≈ 2βe−i/α, (22)

which gives

‖ΔN
na+1g(t)‖∞ = γ∞ ≤ βe−na/α + β̂e−na/α̂ ≈ 2βe−na/α.

(23)
Equation (23) proves that γ∞ is bounded. Therefore, from
(20) and (23), result R1 follows.
The R2 case, is just a variation of the Hölders’ inequality,
where

‖ΔN
na+1g(t)‖1︸ ︷︷ ︸

γ1

≤
N∑

i=na+1

2βe−
i
α = 2β

(
e−

na+1
α − e−

N
α

)
e

1
α − 1

(24)
Furthermore, we know that for i = 0, . . . , na:

J̃1
id ≤ 2β

1 − e−
i+1
α

1 − e−
1
α

, (25)

giving

J̃1
id ≤ 2β

1 − e−
na+1
α

1 − e−
1
α

. (26)

From which it follows that

1 − J̃1
id

1 − e−
1
α

2β
≥ e−

na+1
α , (27)

which via (24) implies that γ1 is bounded by

γ1 ≤ 2β + J̃1
id

1 − e−
1
α

1 − e
1
α

. (28)

�
Remark 3: This result states that the simulation error

between the true output of the system to be identified and the
output of the approximate LTI-like state-space realization of
the identified model is bounded by a given constant which
depends on the input sequence, the noise bound and the
minimum of the functional Jpid. �

Remark 4: Given the input sequence u one can decide
if it is better to minimize, in the identification stage, J∞

id

(case ‖u‖1 < ‖u‖∞) or J1
id (case ‖u‖∞ < ‖u‖1). �



V. SIMULATION EXAMPLE

In this section we demonstrate the performance of the
proposed identification scheme on a relevant simulation
example taken from [18].

Consider the mechanical system depicted in Fig. 1 consist-
ing of a mass connected to a spring and a varying damper.
This problem is one of the typical phenomena occurring
in the motion control of many mechatronic systems like in
active suspension. Denote x the position (in [m]) of the mass
m (in [kg]), ks > 0 (in [N/m]) the stiffness of the spring
and cd > 0 (in [Ns/m]) the varying damping. Introduce F
as the force (in [N]) acting on the mass m. By using the
Newton-Euler force balance approach and by considering
F as the input u, w as the displacement with respect to
the position corresponding to input F = 0 and λ ∈ [0, 1]
as the scheduling variable such that cd = c(0)

d + c(1)
d λ, the

mechanical system in Fig. 1 can be written as a continuous
time LPV model. Then, by using a simple backward Euler
type of discretization in a zero-order-hold setting with sam-
pling period Td > 0, the following discrete-time (DT) LPV
representation for the considered system is obtained:

w(t) = Tdc
(1)
d λt+Tdc

(0)
d +2m

L(λt)
w(t− 1) − m

L(λt)
w(t− 2) +

+ T 2
d

L(λt)
u(t), (29)

where L(λt) = Tdc(1)
d λt+Tdc(0)

d +m+tsT 2
d . The reader is

referred to [18] for further details on the derivation of equa-
tion (29). In order to simplify the problem, we approximate
1
L by its 1st-order Taylor expansion at the mid-point of P,
i.e. at λt = 0.5:

1
L(λt)

∣∣∣∣
λt=0.5

≈ 1
τ1
2 + τ0

− τ1
( τ12 + τ0)2

(λt − 0.5), (30)

where τ0 = Tdc(0)
d +m + ksT

2
d and τ1 = Tdc(1)

d . Then the
resulting DT-LPV representation reads as

w(t) = −(
a10 + a11λt + a12λ

2
t

)
w(t− 1) −(

a20 + a21λt
)
w(t− 2) +

(
b00 + b01λt

)
u(t), (31)

where a11 = −τ ′Tdc(1)
d + τ ′′(Tdc(0)

d + 2m), a10 =
−τ ′(Tdc(0)

d + 2m), a12 = τ ′′Tdc(1)
d , a20 = τ ′m, a21 =

−τ ′′m, b00 = τ ′T 2
d , b01 = −τ ′′T 2

d with τ ′ = 2
τ1+2τ0

+
2τ1

(τ1+2τ0)2
and τ ′′ = 4τ1

(τ1+2τ0)2
. The numerical values of the

system parameters used in the example are: Td = 0.05
s, m = 0.01 kg, ks = 0.85 N/m, c(1)d = c

(0)
d = 0.5

Ns/m. In the sequel, both the input signal u(t) and the
scheduling parameter λt are considered as random variables
uniformly distributed between [−0.5; 0.5] and [0.05; 0.95]
respectively. Realization of these signals are used to generate
a sequence of output data with length N = 50 that will
be exploited to identify the unknown LPV-model parameters
θ = [ a10 a11 a12 a20 a21 b00 b01 ]�. The noise-
free output signal w(t) and the scheduling parameter λt are
corrupted by measurement noises e(t) and ε(t) bounded in
the intervals [−Δe; Δe] and [−Δε; Δε], respectively. An
output error structure is assumed for the noise model. The

Fig. 1. Mass-spring-damper system with varying damping.

chosen error bounds Δe and Δε are such that the signal
to noise ratios on the output SNRw and on the scheduling
signal SNRλ, defined as:

SNRw = 10 log10

‖w(t)‖2
2

‖e(t)‖2
2

,

SNRλ = 10 log10

‖λ(t)‖2
2

‖ε(t)‖2
2

,

are equal to 27 dB and 29 dB, respectively. First, LPV
parameters θ∗id are identified through the discussed method.
In particular, solution to the nonconvex optimization problem
(10) for p = ∞ is computed by relaxing (10) by means of
the LMI-relaxation techniques proposed in [15]. The open
source software Gloptipoly by [19], has been used to convert
the original identification problem (10) into a hierarchy of
convex SDP problems. Then, in order to show the effec-
tiveness of the presented method, an outer bounding box
of the FPS Dθ is derived by using the algorithm proposed
in [9] and, among all the parameters θ belonging to such
a box, the central value θc is chosen as the output of the
identification process (see, e.g., [20] for a detailed discussion
of the optimality properties enjoyed by the central estimate
in the set-membership context).
A collection of 50 input/output data, that are not exploited
during the identification, is used to evaluate the accuracy
of the LTI-like SS-realizations of the identified LPV I/O
models. The comparison between the true output data w(t)
and the estimate output signal ŵ(t) obtained by simulating
the LTI-like SS-realizations of the LPV I/O models with
identified parameters θ∗id and θc is reported in Fig. 2. The
following error measures:

SE∞ =
‖ (w(t) − ŵ(t)) ‖∞

‖ (w(t)) ‖∞ , (32)

SEp =
‖ (w(t) − ŵ(t)) ‖pp

‖ (w(t)) ‖pp
, for p = 1, 2 (33)

are computed to quantify the error between the true output
w(t) and the estimated output ŵ(t). The obtained values are
reported in Table I. Results reported in Fig. 2 and Table I
show that the SS-realization of the I/O model with parameter
θ∗id is significantly more accurate than the SS-realization of
the model with central parameter θc.
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Fig. 2. Comparison between LTI-like SS-realizations of I/O-LPV models
identified with parameters θ∗id and θc. True output signal (solid thick line),
estimated data from parameters θ∗id, (solid thin line), estimated data from
central estimate θc (dashed line).

TABLE I

MEASURES SE2 , SE1 AND SE∞ OF THE ERROR BETWEEN TRUE

OUTPUT SIGNAL w(t) AND ESTIMATED OUTPUT SIGNAL ŵ(t) OBTAINED

BY SIMULATING THE LTI-LIKE SS-REALIZATIONS OF THE I/O-LPV

MODELS WITH IDENTIFIED PARAMETERS θ∗id AND θc .

Identified SE2 SE1 SE∞
parameter

θ∗id 0.22 0.04 0.64

θc 0.65 0.55 1.01

VI. CONCLUSION

A novel set-membership approach for the identification of
LPV I/O models is presented in the paper. The problem of
computing the model in the feasible parameter set which
minimizes the approximation error of applying LTI state-
space realization theory on it is formulated in terms of
semialgebraic optimization and solved by means of suitable
convex relaxation techniques. The simulation error between
the true output of the data-generating system and the sim-
ulated output of the state-space realization of the identified
model is shown to be bounded by a constant which depends
on the input sequence, the identified model and a suitable
measure of the approximation error introduced by the re-
alization stage. The reported simulated example shows the
effectiveness of the proposed approach.
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[8] R. Tóth, Modeling and identification of linear parameter-varying
systems. Springer, 2010.

[9] V. Cerone and D. Regruto, “Set-membership identification of LPV
models with uncertain measurements of the time-varying parameter,”
in Proc. of the 47th IEEE Conference on Decision and Control, 2008,
pp. 4491–4496.

[10] V. Cerone, D. Piga, and D. Regruto, “Set-membership LPV model
identification of vehicle lateral dynamics,” Automatica, vol. 47, no. 8,
pp. 1794–1799, 2011.

[11] ——, “Convex relaxation techniques for set-membership identification
of LPV systems,” in Proc. of the American Control Conference 2011,
San Francisco, California (USA), 2011.
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