70 research outputs found

    Individual participant data meta-analysis of LR-5 in LI-RADS version 2018 versus revised LI-RADS for hepatocellular carcinoma diagnosis

    Get PDF
    Background A simplification of the Liver Imaging Reporting and Data System (LI-RADS) version 2018 (v2018), revised LI-RADS (rLI-RADS), has been proposed for imaging-based diagnosis of hepatocellular carcinoma (HCC). Single-site data suggest that rLI-RADS category 5 (rLR-5) improves sensitivity while maintaining positive predictive value (PPV) of the LI-RADS v2018 category 5 (LR-5), which indicates definite HCC. Purpose To compare the diagnostic performance of LI-RADS v2018 and rLI-RADS in a multicenter data set of patients at risk for HCC by performing an individual patient data meta-analysis. Materials and Methods Multiple databases were searched for studies published from January 2014 to January 2022 that evaluated the diagnostic performance of any version of LI-RADS at CT or MRI for diagnosing HCC. An individual patient data meta-analysis method was applied to observations from the identified studies. Quality Assessment of Diagnostic Accuracy Studies version 2 was applied to determine study risk of bias. Observations were categorized according to major features and either LI-RADS v2018 or rLI-RADS assignments. Diagnostic accuracies of category 5 for each system were calculated using generalized linear mixed models and compared using the likelihood ratio test for sensitivity and the Wald test for PPV. Results Twenty-four studies, including 3840 patients and 4727 observations, were analyzed. The median observation size was 19 mm (IQR, 11–30 mm). rLR-5 showed higher sensitivity compared with LR-5 (70.6% [95% CI: 60.7, 78.9] vs 61.3% [95% CI: 45.9, 74.7]; P < .001), with similar PPV (90.7% vs 92.3%; P = .55). In studies with low risk of bias (n = 4; 1031 observations), rLR-5 also achieved a higher sensitivity than LR-5 (72.3% [95% CI: 63.9, 80.1] vs 66.9% [95% CI: 58.2, 74.5]; P = .02), with similar PPV (83.1% vs 88.7%; P = .47). Conclusion rLR-5 achieved a higher sensitivity for identifying HCC than LR-5 while maintaining a comparable PPV at 90% or more, matching the results presented in the original rLI-RADS study

    A multicenter assessment of interreader reliability of LI-RADS version 2018 for MRI and CT

    Get PDF
    Background: Various limitations have impacted research evaluating reader agreement for Liver Imaging-Reporting and Data System (LI-RADS). Purpose: To assess reader agreement of LI-RADS in an international multi-center, multireader setting using scrollable images. Materials and Methods: This retrospective study used de-identified clinical multiphase CT and MRI examinations and reports with at least one untreated observation from six institutions and three countries; only qualifying examinations were submitted. Examination dates were October 2017 – August 2018 at the coordinating center. One untreated observation per examination was randomly selected using observation identifiers, and its clinically assigned features were extracted from the report. The corresponding LI-RADS v2018 category was computed as a re-scored clinical read. Each examination was randomly assigned to two of 43 research readers who independently scored the observation. Agreement for an ordinal modified four-category LI-RADS scale (LR-1/2, LR-3, LR-4, LR-5/M/tumor in vein) was computed using intra-class correlation coefficients (ICC). Agreement was also computed for dichotomized malignancy (LR-4/LR5/LR-M/LR-tumor in vein), LR-5, and LR-M. Agreement was compared between researchversus-research reads and research-versus-clinical reads. Results: 484 patients (mean age, 62 years ±10 [SD]; 156 women; 93 CT, 391 MRI) were included. ICCs for ordinal LI-RADS, dichotomized malignancy, LR-5, and LR-M were 0.68 (95% CI: 0.62, 0.74), 0.63 (95% CI: 0.56, 0.71), 0.58 (95% CI: 0.50, 0.66), and 0.46 (95% CI: 0.31, 0.61) respectively. Research-versus-research reader agreement was higher than research-versus-clinical agreement for modified four-category LI-RADS (ICC, 0.68 vs. 0.62, P = .03) and for dichotomized malignancy (ICC, 0.63 vs. 0.53, P = .005), but not for LR-5 (P = .14) or LR-M (P = .94). Conclusion: There was moderate agreement for Liver Imaging-Reporting and Data System v2018 overall. For some comparisons, research-versus-research reader agreement was higher than research-versus-clinical reader agreement, indicating differences between the clinical and research environments that warrant further study

    Review of Kaon Physics at CERN and in Europe

    Get PDF
    The Kaon physics program at CERN and in Europe will be presented. I will first give a short review of recent results form the NA48/2 and NA62 experiments, with special emphasis to the measurement of RK , the ratio of Kaon leptonic decays rates, K → eν and K → μν, using the full minimum bias data sample collected in 2007-2008. The main subject of the talk will be the study of the highly suppressed decay K → πνν. While its rate can be predicted with minimal theoretical uncertainty in the Standard Model (BR ∼ 8 × 10−11), the smallness of BR and the challenging experimental signature make it very difficult to measure. The branching ratio for this decay is thus a sensitive probe of the flavour sector of the SM. The aim of NA62 is the measurement of the K → πνν BR with ∼ 10% precision in two years of data taking. This will require the observation of 10K decays in the experiment's fiducial volume, as well as the use of high-performance systems for precision tracking, particle identification, and photon vetoing. These aspects of the experiment will also allow NA62 to carry out a rich program of searches for lepton flavour and/or number violating K decays. Data taking will start in October 2014. The physics prospects and the status of the construction and commissioning of the NA62 experiment will be presented. In the last part of the talk I will report on Kaon physics results and prospects from other experiments at CERN (e.g. LHCb) and in Europe (e.g. KLOE and KLOE-2) and briefly mention the status in US

    LI-RADS Version 2018 Ancillary Features at MRI.

    No full text

    Diffusion-weighted MR imaging in musculoskeletal diseases: current concepts

    Get PDF
    MR imaging is currently regarded as a pivotal technique for the assessment of a variety of musculoskeletal conditions. Diffusion-weighted MR imaging (DWI) is a relatively recent sequence that provides information on the degree of cellularity of lesions. Apparent diffusion coefficient (ADC) value provides information on the movement of water molecules outside the cells. The literature contains many studies that have evaluated the role of DWI in musculoskeletal diseases. However, to date they yielded conflicting results on the use and the diagnostic capabilities of DWI in the area of musculoskeletal diseases. However, many of them have showed that DWI is a useful technique for the evaluation of the extent of the disease in a subset of musculoskeletal cancers. In terms of tissue characterization, DWI may be an adjunct to the more conventional MR imaging techniques but should be interpreted along with the signal of the lesion as observed on conventional sequences, especially in musculoskeletal cancers. Regarding the monitoring of response to therapy in cancer or inflammatory disease, the use of ADC value may represent a more reliable additional tool but must be compared to the initial ADC value of the lesions along with the knowledge of the actual therapy

    Differentiation of focal nodular hyperplasia and hepatocellular adenoma using qualitative and quantitative imaging features and classification and regression tree analysis

    Full text link
    Purpose To assess qualitative and quantitative analysis of gadoxetate disodium-enhanced hepatobiliary phase MR imaging (MRI) and assess the performance of classification and regression tree analysis for the differentiation of focal nodular hyperplasia (FNH) and hepatocellular adenoma (HCA). Materials and methods This retrospective study was approved by our local ethics committee. One hundred seventy patients suspected of having FNH or HCA underwent gadoxetate disodium-enhanced MRI. The reference standard was either pathology or follow-up imaging. Two readers reviewed images to identify qualitative imaging features and measure signal intensity on unenhanced, dynamic, and hepatobiliary phase images. For quantitative analysis, contrast enhancement ratio (CER), lesion-to-liver contrast (LLC), signal intensity ratio (SIR), and relative signal enhancement ratio (RSER) were calculated. A classification and regression tree (CART) analysis was developed. Results Eighty-five patients met the inclusion criteria, with a total of 97 FNHs and 43 HCAs. For qualitative analysis, the T1 signal intensity on the hepatobiliary phase provided the highest overall classification performance (91.9% sensitivity, 90.1% specificity, and 90.9% accuracy). For quantitative analysis, RSER in the hepatobiliary phase with a threshold of 0.723 provided the highest classification performance (92.6% sensitivity and 89.4% specificity) to differentiate FNHs from HCAs. A CART model based on five qualitative imaging features provided an accuracy of 94.4% (95% confidence interval 90.0–98.9%). Conclusion Gadoxetate disodium-enhanced hepatobiliary phase provides high diagnostic performance as demonstrated in quantitative and qualitative analysis in differentiation of FNH and HCA, supported by a CART decision model

    CT arthrography of adhesive capsulitis of the shoulder: Are MR signs applicable?

    No full text
    OBJECTIVE: To determine if diagnostic signs of adhesive capsulitis (AC) of the shoulder at Magnetic Resonance Imaging (MRI) and arthrography (MRA) are applicable to CT arthrography (CTA). METHODS: 22 shoulder CTAs with AC were retrospectively reviewed for features described in MR literature. The control group was composed of 83 shoulder CTA divided into four subgroups 1) normal (N = 20), 2) omarthrosis (N = 19), 3) labral injury (N = 23), and 4) rotator cuff tear (N = 21). Two musculoskeletal radiologists assessed the rotator interval (RI) for obliteration, increased width and thickening of coracohumeral ligament (CHL). The width and capsule thickness of the axillary recess were measured. RESULTS: The width of the axillary recess was significantly decreased in the AC group (4.6 ± 2.6 mm versus 9.9 ± 4.6 mm, p ≤ 0.0001; sensitivity and specificity of 84% and 80%). Thickness of the medial and lateral walls of the axillary capsule was significantly increased in the AC group (5.9 ± 1.3 mm versus 3.7 ± 1.1 mm, p ≤ 0.0001 and 5.7 ± 1 mm versus 3.5 ± 1.3 mm, p ≤ 0.0001, respectively). CHL thickness was significantly increased in the AC group (4.1 ± 1 mm (p ≤ 0.001)) in comparison to others groups. Obliteration of the RI was statistically significantly more frequent in patients with AC (72.7% (16/22) vs. 12% (10/83), p < 0.0001). Width of the RI did not differ significantly between patients and controls (p ≥ 0.428). CONCLUSION: Decreased axillary width, and thickened axillary capsule are MR signs of AC applicable to CTA. Evaluation of rotator interval seems useful and reproducible only for obliteration

    Impact of temporal resolution and motion correction for dynamic contrast-enhanced MRI of the liver using an accelerated golden-angle radial sequence

    Get PDF
    This paper presents a prospective study evaluating the impact on image quality and quantitative dynamic contrastenhanced (DCE)-MRI perfusion parameters when varying the number of respiratory motion states when using an eXtra-Dimensional Golden-Angle Radial Sparse Parallel (XD-GRASP) MRI sequence. DCE acquisition was performed using a 3D stack-of-stars gradient-echo golden-angle radial acquisition in free-breathing with 100 spokes per motion state and temporal resolution of 6 s/volume, and using a non-rigid motion compensation to align different motion states. Parametric analysis was conducted using a dual-input single-compartment model. Nonparametric analysis was performed on the time-intensity curves. A total of 22 hepatocellular carcinomas (size: 11–52 mm) were evaluated. XD-GRASP reconstructed with increasing number of spokes for each motion state increased the signalto-noise ratio (SNR) (p < 0.05) but decreased temporal resolution (0.04 volume/s vs 0.17 volume/s for one motion state) (p < 0.05). A visual scoring by an experienced radiologist show no change between increasing number of motion states with same number of spokes using the Likert score. The normalized maximum intensity time ratio, peak enhancement ratio and tumor arterial fraction increased with decreasing number of motion states (p < 0.05) while the transfer constant from the portal venous plasma to the surrounding tissue significantly decreased (p < 0.05). These same perfusion parameters show a significant difference in case of tumor displacement more than 1 cm (p < 0.05) whereas in the opposite case there was no significant variation. While a higher number of motion states and higher number of spokes improves SNR, the resulting lower temporal resolution can influence quantitative parameters that capture rapid signal changes. Finally, fewer displacement compensation is advantageous with lower number of motion state due to the higher temporal resolution. XD-GRASP can be used to perform quantitative perfusion measuresin the liver, but the number of motion states may significantly alter some quantitative parameters
    corecore