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Abstract 
 

This paper presents a prospective study evaluating the impact on image quality and quantitative dynamic contrast-
enhanced (DCE)-MRI perfusion parameters when varying the number of respiratory motion states when using an 
eXtra-Dimensional Golden-Angle Radial Sparse Parallel (XD-GRASP) MRI sequence. DCE acquisition was 
performed using a 3D stack-of-stars gradient-echo golden-angle radial acquisition in free-breathing with 100 spokes 
per motion state and temporal resolution of 6 s/volume, and using a non-rigid motion compensation to align different 
motion states. Parametric analysis was conducted using a dual-input single-compartment model. Nonparametric 
analysis was performed on the time-intensity curves. A total of 22 hepatocellular carcinomas (size: 11–52 mm) were 
evaluated. XD-GRASP reconstructed with increasing number of spokes for each motion state increased the signal-
to-noise ratio (SNR) (p < 0.05) but decreased temporal resolution (0.04 volume/s vs 0.17 volume/s for one motion 
state) (p < 0.05). A visual scoring by an experienced radiologist show no change between increasing number of 
motion states with same number of spokes using the Likert score. The normalized maximum intensity time ratio, 
peak enhancement ratio and tumor arterial fraction increased with decreasing number of motion states (p < 0.05) 
while the transfer constant from the portal venous plasma to the surrounding tissue significantly decreased (p < 
0.05). These same perfusion parameters show a significant difference in case of tumor displacement more than 1 cm 
(p < 0.05) whereas in the opposite case there was no significant variation. While a higher number of motion states 
and higher number of spokes improves SNR, the resulting lower temporal resolution can influence quantitative 
parameters that capture rapid signal changes. Finally, fewer displacement compensation is advantageous with lower 
number of motion state due to the higher temporal resolution. XD-GRASP can be used to perform quantitative 
perfusion measures in the liver, but the number of motion states may significantly alter some quantitative parameters. 
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1. Introduction 

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, typically occurring in people affected with 
chronic liver disease. It is the sixth most frequent cancer and the second leading cause of cancer-related death in the world, with its 
incidence continuing to rise in North America (Tang et al 2018). 
 
Due to neoangiogenesis, HCC is a highly vascular tumor with a typical enhancement pattern characterized by arterial phase 
hyperenhancement followed by washout on subsequent vascular phases on contrast-enhanced dynamic imaging (Jian et al 2018). 
Several tests and imaging techniques may be used to diagnose this disease, including serum alpha-fetoprotein, liver biopsy and 
imaging examinations such as computed tomography (CT), magnetic resonance imaging (MRI) and contrast-enhanced 
ultrasound. Imaging techniques play an important role in the diagnosis, monitoring and treatment planning of HCC (Chen et al 
2013). Recent studies have shown the potential for quantifying perfusion of malignant liver lesions using perfusion CT (Sahani 
et al 2007, Ippolito et al 2010) and dynamic contrast-enhanced (DCE)-MRI (Wang et al 2004, Abdullah et al 2008, Thibodeau-
Antonacci et al 2019). Because an early assessment of treatment effectiveness response is necessary for planning additional 
therapy (Bonekamp et al 2011), DCE-MRI may provide quantitative and objective measures to evaluate treatment response. 
 
The key advantages of MRI reside in the exquisite soft tissue contrast, numerous tissue contrast mechanisms and relatively high 
resolution without the use of any ionizing radiation. However, MRI provides a lower temporal resolution than other contrast-
enhanced modalities, such as fluoroscopy, contrast-enhanced ultrasound, CT or cone beam computed tomography (CBCT). DCE-
MRI is an advanced imaging technique based on measuring the signal intensity changes due to local perfusion after gadolinium-
based contrast agent injection. In comparison to traditional clinical imaging sequences, DCE-MRI generally provides higher 
temporal resolution with spatial resolution trade-off arising from the need to compensate for breathing motion (Materne et al 2002, 
Pahwa et al 2018). 
 
One approach to address breathing-related artefacts is by using radial sampling of k-space (Chandarana et al 2013). Recently, 
the combination of parallel imaging with compressed sensing and a golden-angle radial sampling scheme has been presented 
as a new free-breathing imaging technique for dynamic imaging (Golden-angle RAdial Sparse Parallel imaging or GRASP) 
(Chandarana et al 2013, Feng et al 2014). 
 
GRASP has been applied for dynamic image reconstruction of various organs including the liver, heart, prostate and breast. The 
foundation of this method lies in applying a regularization on the temporal dimension along with a golden angle radial sampling 
to achieve motion robustness even during free-breathing. This method shows a reduction of streaking artifacts. However, it does 
not account for motion directly, which can therefore result in motion-related blurring (Le 2017). 
 
Previous studies have shown that compared to the conventional breath-held Cartesian acquisition, GRASP can produce images 
with improved spatial resolution which can be used for diagnostic purposes (Chandarana et al 2013). However, since GRASP still 
suffers from residual respiratory blurring, it may lead to reduced vessel-tissue and lesion-tissue contrast thus limiting the 
interpretation of the images clinically and impacting the quantification process in the case of a quantitative assessment of perfusion 
as provided by DCE-MRI. To address these limitations, a variant known as eXtra-Dimensional Golden-Angle RAdial Sparse 
Parallel (XD-GRASP) reconstruction technique was recently proposed (Feng et al 2016). It is based on reconstructing the extra 
respiratory motion dimension from the k-space data, by ordering each contrast-enhanced phase from end-inspiration to end-
expiration into multiple respiratory motion states, where the grouped number of spokes in each motion state remains the same 
(Grimm 2015). However, to our knowledge there is limited previous work on XD-GRASP in abdominal imaging (Feng et al 2016, 
Chitibo et al 2019) and no previous work evaluating the impact of XD-GRASP acquisition parameters on imag quality and DCE-
MRI parameters. The purpose of this study was therefore to evaluate the impact of the number of respiratory motion states using 
XD-GRASP reconstruction on image quality and quantitative DCE-MRI perfusion parameters. 

2. Methods and materials 

2.1. Imaging protocol 
 
This study was based on free-breathing acquisitions from 11 patients which were reconstructed using the XD-GRASP technique 
with different number of motion states followed by several analyses (figure 1). This prospective study was approved by our 
institutional review board and consent was obtained from all patients. Eleven patients, 6 men and 5 women (70 years ±11 
[standard deviation]) diagnosed with HCC, with tumors exceeding 10 mm, underwent DCE-MRI examinations between 
September 2018 and December 2018. 
 
Patients were scanned on a 3.0T clinical MRI system (Ingenia, Philips Healthcare, Best, The Netherlands) using the combination  
of a 16-channel anterior array and a 12-channel posterior array for signal reception. 
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To limit peristalsis, patients were asked to fast for four hours before the examination. T1 mapping was performed prior to contrast 
injection using the variable flip-angle method with fat-saturated Cartesian 3D gradient-echo acquisitions with flip angles of 4◦, 8◦ 
and 12◦. These acquisitions were performed in breath-hold using the same spatial resolution and field-of-view as the subsequent DCE 
acquisition. 

 
The DCE acquisition was performed in free-breathing using a 3D stack-of-stars golden-angle gradient-echo radial acquisition with 
fat-saturation (Pahwa et al 2018). Thirty seconds after the beginning of the DCE acquisition, gadobenate dimeglumine 
(MultiHance®, Bracco Imaging SpA, Milan, Italy) was  injected with an adjusted dose according to patient weight (0.1 mmol kg−1 
with a maximum dose of 20 ml) at 1.5 ml s−1 followed by a 15 ml saline flush at 1.5 ml s−1. Data was acquired continuously for 6 
min. In total 50 slices were acquired with 5 mm spacing and then the acquired data was reconstructed to obtain 100 slices with 2.5 
mm. The FOV was 250 mm. Imaging parameters for the DCE sequence are listed in table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
XD-GRASP is a novel method for dynamic image reconstruction based on a continuous scan during free breathing developed by 
Feng et al (2016). It is based on reconstructing the extra respiratory motion dimension from the acquired k-space data (figure 2). 
In the context of 3D liver imaging, this reconstruction is performed by solving the following optimization equation using 
compressed sensing: 

ˆx =argmin||y ­ FSx||2 + λ1||C1x|| + λ2||C2x|| . (1) 
2 1 1 

F is the Non-Uniform Fast Fourier Transform (NUFFT) operator defined on the radial sampling pattern of each frame of x, where 
x is the 3D dynamic image-series and y is the corresponding multicoil radial k-space data sorted into several contrast phases. 
Furthermore, S represents the coil sensitivity maps estimated using Walsh method (Grimm 2015) from the multicoil reference 
image given by the coil-by-coil NUFFT (Fessler 2019) reconstruction of k-space data by averaging all the acquired spokes. Here, 
C1 and C2 are the sparsifying transforms with weighting parameters λ1 and λ2 applied in the contrast-enhancement dimension and 
along the extra respiratory state dimension, respectively. The same sparsifying transform ‘Total Variation’ constraint was used for 
both the respiratory dimension and the contrast enhanced phase but with different weighting parameters. The sparsifying transform 
is based on removing unwanted details while preserving important details such as edges, while the duration of each contrast-
enhancement phase was 6 s. This transform plays an important role in removing streaking artifacts or the interspokes k-space 
information in frequency domain (Block et al 2007). The total number of spokes acquired was 691. 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Overview of the study plan. 
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Table 1. DCE-MRI sequence parameters used for XD-GRASP reconstruction and computation of perfusion parameters from HCC 
lesions. 

 

Sequence Parameter 
 

Sequence type 3D stack-of-stars gradient-echo radial 
acquisition with fat saturation 

Repetition time 3.40 ms 
Echo time 1.40 ms 
Field of view 450 × 450 × 250 
Flip angle 12◦ 
Number of slices acquired 50 
Slice thickness 5.0 mm 
Number of slices reconstructed 100 
Slice thickness 2.5 mm 
Spatial resolution 1.5 × 1.5 mm 

 
2.2. XD-GRASP reconstruction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The coil elements used for signal reception may have different noise levels. Therefore the k-space data is obtained after a noise 
whitening step which decorrelates and normalizes the channel and thus suppresses the influence of the defective coil elements.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Continuous acquisition of spokes with 3D stack-of-stars. Radial encoding in the kx–ky planes and fully-sampled 
Cartesian on the kz dimension. Red dots represent the k-space center from which the respiratory motion signal was extracted 
(Feng et al 2014). 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Figure 2. Respiratory signal extracted from k-space data center. 
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The MR pulse sequence used in this work represents Cartesian encoding over kz and a stack of stars trajectory with radial sampling 
over kx–ky (Usman et al 2013) (figure 3). The radial sampling angle is the golden angle ~111.25◦. The sampling motion artifacts are 
averaged out by oversampling the center of k-space in the radial sampling. This oversampling may lead to an overweighting of low 
frequencies so a density compensation is applied where it serves the same aim as a ramp filter (Fessler 2019): 

d (Ø, r) = |r|∗ 1 
, (2) 

Na 

where r is the k-space data and Na the number of radial samplings. 
 
Finally, the coil sensitivity is an important parameter to be estimated in the pre-processing steps. The Walsh approach (Lustig et 
al 2007), using an adaptive matched filter for the multi-coil data to reduce the noise in the background and dark areas of the 
images, was adapted for these purposes. It is based on calculating the covariance matrices of the noise and signal at each image 
pixel where the eigenvector of these matrices provides an almost optimal coil sensitivity estimation. The individual coil images 
used for the sensitivity estimation are extracted from the radial data itself using a NUFFT. 
 
The XD-GRASP reconstructions for each contrast enhancement phase was performed by sorting the acquired data into 4, 3, 2 and 
1 motion states. A total 100 consecutive spokes with footprint of 25 spokes were used for each motion state and for 1 motion state 
(GRASP) where, single dynamic dimension represents the contrast enhancement disrupted by motion. For comparison purposes, 
reconstructions using 100, 75, 50 and 25 spokes for 4, 3, 2 and 1 motion states, respectively, were also generated. An effective 
temporal resolution of
6 s/volume, 12 s/volume, 18 s/volume and 24 s/volume, was associated to 1, 2, 3 and 4 motion states, respectively while the 
nominal temporal resolution was 6 s/volume. These reconstruction were compared to a baseline which is based on an approach 
without applying the compressed sensing constraint using Non-Uniform Fast Fourrier transform (NUFFT) reconstructions. It was 
implemented by means of convolutions with a Kaiser Bessel kernel. All images were reconstructed in MATLAB R2018a (The 
MathWorks, Inc. Natick, MA, USA) using the framework implementation by Feng et al.1 
 

2.3. Nonrigid motion compensation 
 
For quantitative analysis, the contrast-enhanced liver MR perfusion image series was registered with MoCo (Corstem, Montreal, 
QC, Canada), a non-rigid motion compensation software using subpixel deformation maps. This software used non-rigid 
estimation of displacement based on an optical flow formulation adapted to dynamics of perfusion series (Brox and Malik 2011). 
This implementation allows to register MRI perfusion image series with varying breathing patterns (Jacobs et al 2016, Benovoy et 
al 2017). All the images were then registered to the first image used as the initial target. 
 
In the T1 mapping, to handle the varying breath-hold, the same non rigid registration using the MoCO technique was performed 
between images with different flip angles. 
 
The reconstructed 5D images obtained using XD-GRASP are composed of several respiratory motion states for each phase of 
contrast enhancement phase. To completely suppress these movements and their effect, even after their reconstruction, the motion 
compensation software was used to register all the motion states to an intermediate one for each phase of contrast enhancement. 
And finally, these motion states were averaged to obtain 4D (x-y-z-t) images. 
 
The reference frame was chosen as one of the intermediate motion state to avoid registration to an extreme phase (end inhale or 
end exhale). In the case of four motion states, we chose the third one as reference and in case of three motions states, we chose 
the second one as the reference. 
 
The optimal solution for registration is obtained by minimizing the following cost function: 

E (w) = Eint (w) + γEgrad (w) + αEsmooth (w) + βEmatch (w, w1) + Edesc (w1) (3) 

where Eint indicates the pixel intensity energy term, Egrad is the gradient constraint, Esmooth is the regularization term, Ematch is 
histogram oriented gradient (HOG) based landmark correspondence energy term and Edesc is a continuous formulation for 
discrete descriptor matching. This equation is controlled with three parameters: β the weight of the HOG descriptor matching 
term, α flow fields smoothness and γ the gradient consistency term weight. We did not perform any registration over time so the 
contrast enhancement was not affected. The registration was just applied between motion states. 
 

2.4. MR image quantitative DCE analysis 
 
For each set of images, a manual selection of four regions of interest (ROI) was performed during the vascular phases providing 
the best visualization of the portal vein, the abdominal aorta, the liver tumors and the normal-appearing liver. The abdominal aorta 
was identified after contrast arrival when it had the highest signal intensity whereas the portal vein was most clearly visible during 
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the portal venous phase. 
 
For the aorta, portal vein and liver, only one slice was selected. For the liver, the slice including the complete liver was chosen 
and for the aorta and the vein, the slice which best showed these structures according to a fellowship-trained abdominal 
radiologist was selected. 
 
There was at least one tumor (HCC) in each patient confirmed by an experienced abdominal radiologist (AT) using previous 
diagnostic imaging. If a patient had multiple tumors, the segmentation was performed for each one. Each tumor was segmented 
on multiples slices which includes all slices where the tumor appears, to minimize sampling errors. Segmentations were performed 
by a third-year radiology resident (LB, with two years of experience), using MATLAB R2018a (The MathWorks, Inc. Natick, MA, 
USA). 
 
To measure the average signal intensity versus time curves, each selected ROI was then extended to all motion compensated DCE-
MRI time points. In order to assess the image quality, we first calculated the signal-to-noise ratio (SNR) as a measure of image 
quality (Welvaert and Rosseel 2013). It is defined as the ratio of the average normal liver signal and the background standard 
deviation: 

SNR =   µliver  . (4) 
σbackground 

 

 
 
Then, the contrast-to-noise ratio (CNR) was calculated. It is defined as the ratio of the absolute difference between average normal 
liver signal and average tumor signal to the background standard deviation: 

CNR = |µliver ­ µtumor| . (5) 
σbackground 

 

The background region was selected just outside the subject at the closet position to the liver. This region was selected in same 
position for all reconstructions of each patient. From patient to another, slight differences depending on the liver position may 
have occurred. 
 
A visual scoring of image quality based on five point Likert scoring (used as standard in the hepatic imaging field) which was 
performed by an abdominal fellowship radiologist with five years of experience. The scoring scale use quality index: 1 (Extremely 
poor), 2 (Poor), 3 (Fair), 4 (Good) and 5 (Excellent), where index 1 and 2 are considered clinically unacceptable and 3 to 5 clinically 
acceptable (Martinez et al 2020). 
 

2.5. Tumor tracking 
 
We quantified the motion of the tumors between extreme phases (full inspiration and full expiration) of the XD-GRASP 
reconstruction with four respiratory motion states, before the motion compensation, through deformable registration using 
NiftyReg software (Modat et al 2010). A cubic B-splines-based transformation model with a pyramidal multi-resolution strategy 
at three different levels was adopted. The level of alignment between source and target volumes was quantified by Normalized 
Mutual Information. A regularizer term based on the bending-energy as proposed in (Rueckert et al 1999) was used. 
 
In addition, we applied the same deformable registration after the motion compensation step using the third phase as the reference 
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to estimate residual tumor displacement. 
 
To measure the lesion motion range we look only at the tumor motion where dense deformation vectors were multiplied by a 
segmentation mask in order to consider only voxels belonging to the tumor. Then we calculated the three-dimensional Euclidean 
distance as follows: 

d = 
√
(∆X)2 + (∆Y)2 + (∆Z)2 (6) 

 

Finally, we reported the lesion mean motion value over all temporal points. For visualisation purposes, the resulted images of 
this registration were computed with an open-source ITK module. 
 

2.6. Perfusion parameters 
A linear interpolation to a 1 s time stamp was performed on the signal-time curves followed by a non-parametric analysis that directly 
calculated simple perfusion parameters correlating with the physiology of tissue. The parameters defined in table 2 were 
subsequently used to perform a direct comparison between reconstructed images with increasing number of motion states. These 
parameters are illustrated in figure 4 where TTP is the time that contrast agent need to reach its maximum value (TTP = TmaxC–T0) 
and T0 is the onset time representing the contrast agent arrival in tissue. 
 
T1 mapping linear conversion was used to convert the signal intensity for each previously selected ROI at different times into a 
contrast agent concentration. The linear relation between 1/T1 and the contrast agent concentration is considered in tissue and blood 
using the following equation: 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Example of signal intensity vs. time curve. 
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Patient-specific B1 shimming (two transmit channels, phase and amplitude) was performed, but no additional correction based on 
the acquisition of a B1 map was performed, primarily for acquisition time constraints. B1 inhomogeneities could add to inter-lesion 
variability in the DCE parameters, but would most likely not affect the direct comparison between the different reconstructions 
performed from the same raw data and thus under the same B1 conditions. 
 
The dual-input single-compartment model, a direct approach normally used for parametric analysis, was adjusted to experimental 
tumor data and the liver tissue surrounding it. It needs an accurate assessment of the arterial input function (AIF) and the portal 
venous input function (PIF). 
 
After linear interpolation, the ROI contrast agent concentration in the portal vein was used to estimate the portal venous input 
function (PIF). And the arterial supply extracted from the drawn ROI on the abdominal aorta (celiac trunk) and its contrast 
agent concentration were used for the estimation of the arterial input function (AIF) (Hormuth et al 2014). 
 
From this model, we had the ability to extract the transfer constant from the liver tissue to the central vein K2 and the transfer 
constants from the arterial plasma to the surrounding extravascular space ka and the transfer constants from the portal venous 
plasma to the surrounding tissue kp (Breuer et al 2005). Using the relations developed by Materne et al (2002), we estimated the 
tumor arterial fraction (ART), where the arterial blood flow was calculated and expressed in ml · min­1 · 100 ml­1 and then as a 
fraction (%): 
 

                                                                               ART(% ) = 100 ∗   ka       (8) 

                                                                                                            ka + kp     

and the distribution volume (DV) (Materne et al 2002), using: 

                                                                               DV(%) = 100 ∗ ka + kp , (9) 
                                                         k2 

which estimates the ratio of arterial and portal plasma over the central vein blood flow. 
 

2.7. Statistical analysis 
 
For this study, statistical analysis were performed in Excel, using ANOVA test between XD-GRASP with different number of motion 
states (1, 2, 3 and 4), and using paired t-test between XD-GRASP with 1 and 4 motion states. In both tests, p < 0.05 was considered 
as statistically significant. 
 
Patients and Tumors Characteristics: table 3 summarized demographic descriptive statistics (sex and age) and clinical data, including 
the tumor characteristics and the etiology of liver disease. Variables of categories were represented as percentages and numbers and 
the rest as minimum, maximum and mean ±standard deviation (SD). 
Parametric and Nonparametric Analyses: comparisons of mean values for perfusion parameters states as well as the comparison of 
the p-value of contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) was made for XD-GRASP with different numbers of 
respiratory motion. The tumors were then divided into two categories, the first representing the tumor displacement greater than 1 
cm while the second representing a displacement less than 1 cm. Then, the mean values of perfusion data parameters for each 
category were calculated and a comparison was made between 1 motion state and 4 motion states. 
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Figure 5. Patient selection flowchart. 
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3. Results 

3.1. Patients and tumors characteristics 
In this pilot study, eleven patients totaling 22 HCCs with tumor diameters between 11 and 52 mm were included. Figure 5 shows 
the patient selection flowchart and table 3 represents the patients and tumors characteristics. 169 patients diagnosed with HCC 
and awaiting their clinical MRI between September 2018 and December 2018 were eligible. 11 patients were selected for 
additional MRI acquisition using the proposed protocol. The most common reasons for excluding patients were related to MRI 
scheduling (timeline too short to schedule MRI, MRI already done, postponed MRI or impossible to book MRI), distance from 
the hospital and fasting too long. Thus, a total of 11 patients were included. 
 

3.2. Image quality 
 
In order to analyse the performance of the technique and to assess the image quality from the reconstructed images, we calculated 
SNR and CNR. XD-GRASP reconstructed with increased motion states with different number of spokes improves the contrast-to-
noise ratio and the signal-to-noise ratio (p < 0.05) but reduces temporal resolution (0.04 volume/s vs 0.17 volume/s for one motion 
state) (p < 0.05) (figure 6). XD-GRASP with 3 and 4 motion states had higher overall image quality scores compared to XD-GRASP 
with 1 and 2 motion states as it showed reduced streak artefact (figure 8). Results for image reconstructed with different number of 
spokes show that on average, the reconstruction with 4 phases received the higher scores (4.6) while the reconstruction with one 
phase received the lower one (1). 
 
In the case of XD-GRASP reconstructed with 100 spokes, there was no significant difference in SNR and CNR and the visual scoring 
show an average score of 4 for all cases (4, 3, 2 and 1 motion state). Since the reconstruction had a footprint of 25 spokes, the 
nominal temporal resolution was the same 6 s/volume while the effective one was as discussed previously. 
 
Compared to the baseline reconstruction, we can clearly see the importance of XD-GRASP with regards to quality image as shown 
in figure 7. This reference reconstruction was evaluated using the same ROI and same length of time points to generate the 
corresponding perfusion curves and compared it to GRASP and XD-GRASP. There is a significant difference between the 
baseline and the images reconstructed with XD-GRASP, particularly concerning image quality, and shows higher peak of aorta 
concentration, but is more noisy and unstable. 
 
Figure 6 shows that increasing the number of respiratory motion states improves the SNR and CNR but reduce the temporal 
resolution thus influencing quantitative parameters that capture rapid signal changes. This is confirmed with figure 8, which clearly 
shows the improvements of the image quality by increasing the number of motion states for several patients. 
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Table 3. Patients and tumors characteristics. 

 

Characteristics Data 
 

Age 
Median (min–max)∗ 70 (48–86) 
Sex 
Male 6/11 (54.5) 
Female 5/11 (45.5) 
Known cirrhosis 8/11 (72.70) 
Etiology of liver disease 
Hepatitis A infection 1/11 (9.10) 
Hepatitis C infection 3/11 (27.3) 
Alcoholic liver disease 5/11 (45.5) 
Non-alcoholic steatohepatitis 5/11 (45.5) 
HCCs number per patient 
Mean (min–max)∗ 2 (0–4) 
Size of HCC (mm) 
Mean ± SD (min–max)∗ 25.8 ± 13.2 (11–52) 

Note. —Unless stated otherwise∗, data in parentheses are percentages. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Example of XD-GRASP images with different number of spokes from a 70-year-old woman with HCC at 3.4 cm liver 
mass in segment VIII (white arrow). Its representative temporal resolution, contrast-to-noise ratio (CNR) and signal-to-noise 
ratio (SNR), are shown for increasing number of respiratory motion states. 
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3.3. Tumor tracking 
Figure 9(a) compares the diaphragm boundary deformation between the 4 motion states of the XD-GRASP reconstructed image. 
The diaphragm boundaries are marked by the white line. The results show that there is a clear motion between different phases 
which was confirmed by the deformation vector field between the first and last motion state represented in figure 9(b). 
 
The mean Euclidean distance calculated before registration for each tumor varies between 1.3 mm to 31 mm (mean 11.9 ± 8 
mm) depending on the respiration of each patient as shown by the blue bars in figure 9(c). Following motion compensation, 
tumor target displacements varied between 0.2 and 4 mm (mean 0.9 ± 1 mm), as shown by the orange bars in figure 9(c). 
 

3.4. Perfusion analysis 
Figure 10 represents global enhancement curves for the portal vein, the liver, the abdominal aorta and the tumor from data 
reconstructed with increasing number of motion states (1–4) and same number of spokes. The HCC enhancement clearly occurs 
before the liver’s one in the case of 1 and 2 motion states. 
 
Comparison of all perfusion parameters between different numbers of phases is summarized in table 4 as mean ± SD. Time to 
peak (TTP) did not significantly change with decreasing number of motion states. The normalized maximum intensity time ratio 
(nMITR), the peak enhancement ratio (PER) (p < 0.05), and the tumor arterial fraction increased with decreasing number of 
motion states (p < 0.05) while the transfer constant from the portal venous plasma to the surrounding tissue (Kp) significantly 
decreased (p < 0.05). 
 
Table 5 as well summarized the perfusion parameters between 4 motion states and 1 motion state depending on the tumor 
displacement. For displacement greater than 1 cm, the normalized maximum intensity time ratio (nMITR), the peak enhancement 
ratio (PER), the tumor arterial fraction (ART) and the transfer constant from the portal venous plasma to the surrounding tissue 
(Kp) significantly change (p < 0.05). On the other hand, in case of tumors displacement less than 1 cm, it was clear that there was 
no significant changes in all parameters except for the tumor arterial fraction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Example of XD-GRASP with different number of motion states and a baseline approach and the corresponding aorta 
concentration. 
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4. Discussion 

This prospective study evaluated the impact on image quality and quantitative DCE-MRI perfusion parameters using an XD-
GRASP sequence in patients with HCC, by evaluating the effect of the number of respiratory motion states during image 
reconstruction. 
 
XD-GRASP reconstructed with higher number of motion states and higher number of spokes represents reduced temporal 
resolution and better image quality due to the regularization over motion states and to the better correspondence between different 
spokes and this was clear too comparing to the baseline. While XD-GRASP reconstructed with the same number of spokes does 
not show any significant variation in term of quality and the nominal temporal resolution was constant for 6 s/volume. 
 
In comparison to the GRASP method representing one motion state with higher temporal resolution, liver motion is not as apparent 
with the XD-GRASP sequence. However, this observation does not necessarily mean that liver motion was removed or 
compensated for during the acquisition. This was clear with XD-GRASP with several motion states, where figure 9 shows the 
displacement of the liver and tumors with the representative deformation vector field. This displacement was solved by registering 
all the states using a non-rigid motion compensation technique. Therefore, the GRASP method suffers from residual respiratory 
blurring, leading to reduced vessel-tissue and lesion-tissue contrast. It limits the interpretation of the images clinically and impacts 
the quantitative assessment of perfusion. 
 
As shown in figure 10, we can observe that a free breathing acquisition with radial k-space acquisition provides organ motion 
robustness and uniformity in temporal resolution, thus allowing time intensity curve continuous assessment including the arterial 
peak. Before the intersection of the tumor and liver curves, HCC enhancement clearly occurs before the liver enhancement due to 
high arterialization of the tumor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Example of reconstructed XD-GRASP images for four patients with increasing number of motion states with multiple 
number of spokes (tumors identified by white arrow). 
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Figure 10. Global perfusion curves for the 22 tumors, demonstrating the increased difference between liver and HCC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9. (a) Comparison of diaphragm position between motion states. (b) Deformation vector field (in pixel) for a sample case 
between the first and last phases (tumor identified by red box). (c) Tumors displacement (mm) before and after motion 
compensation. 
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For the arterial enhancement, the normalized maximum intensity time ratio and peak enhancement ratio and tumor arterial fraction 
increased with decreasing number of motion states while the transfer constant from the portal venous plasma to the extravascular 
space significantly decreased 
 
  

Table 4. Perfusion parameters changes between different XD-GRASP reconstructions. 
 

Note—All values are expressed as mean ± SD except p values.ka: transfer constant from the arterial plasma to the surrounding tissue, 
TTP: time to peak, PER: peak enhancement ratio, ART: arterial fraction, nMITR: normalized maximum intensity time ratio, kp: transfer 
constant from the portal venous plasma to the surrounding tissue, DV: distribution volume and k2: transfer constant from the tissue to 
the central vein. 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5. Perfusion parameters changes between GRASP and XD-GRASP with four motion states depending on the tumor displacement 
(greater or lower than 1 cm). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Tumor displacement > 1 cm (n = 12) Tumor displacement < 1 cm (n = 10) 
Note—All values are expressed as mean ± SD except p values. 

 
 

 
Parameters 

4 motion 
states 

3 motion 
states 

2 motion 
states 

1 motion 
state 

 
p value 

Parametric Analysis 
Kp (10–3) (s­1) 

 
2.1 ± 2.5 

 
1.8 ± 2.1 

 
1.1 ± 0.8 

 
0.8 ± 1.1 

 
<0.05 

Ka (10–3) (s­1) 0.9 ± 1.0 1.2 ± 1.3 1.3 ± 1.5 1.8 ± 2.8 0.27 
K2 (10–2) (s­1) 5.4 ± 10.2 4.8 ± 4.0 4.9 ± 5.5 6.2 ± 10.2 0.78 
DV (%) 25.3 ± 43.9 20.4 ± 23.2 17.1 ± 17.3 19.1 ± 20.1 0.31 
ART 0.3 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.6 ± 0.3 <0.05 
Non Parametric Analysis      

PER 0.25 ± 0.20 0.3 ± 0.3 0.4 ± 0.5 0.8 ± 1.5 <0.05 
TTP (s) 60.3 ± 37.5 67.9 ± 42.7 65.1 ± 37.4 67.6 ± 37.2 0.90 
nMITR (10–2) (s­1) 0.2 ± 0.2 0.3 ± 0.6 0.8 ± 1.4 1.4 ± 1.9 <0.05 
Wash-in slope (10–3) (s­1) 6.1 ± 7.8 7.5 ± 10.6 8.3 ± 14.9 5.4 ± 10.4 0.80 
Wash-out slope (10–3) (s­1) 0.9 ± 4.2 1.05 ± 4.02 1.07 ± 4.40 0.8 ± 2.1 0.90 

 
Parameters 

4 motion 
states 

1 motion 
state 

 
p value 

 4 motion 
states 

1 motion 
state 

 
p value 

Parametric Analysis 
Kp (10–3) (s­1) 

 
2.8 ± 3.5 

 
0.9 ± 1.5 

 
<0.05 

  
0.9 ± 1.2 

 
0.4 ± 0.5 

 
0.2 

Ka (10–3) (s­1) 1.3 ± 1.4 2.8 ± 3.5 0.06  0.3 ± 0.5 0.9 ± 1.9 0.25 
K2 (10–2) (s­1) 7.1 ± 14.2 7.2 ± 13.6 0.92  3.5 ± 4.5 4.4 ± 7.8 0.72 
DV (%) 16.8 ± 22.7 10.9 ± 22.9 0.63  11.7 ± 15.9 14.4 ± 19.4 0.98 
ART 0.35 ± 0.17 0.6 ± 0.4 <0.05  0.3 ± 0.13 0.5 ± 0.3 <0.05 
Non Parametric Analysis        

PER 0.3 ± 0.2 1.3 ± 1.9 <0.05  0.09 ± 0.11 0.5 ± 0.9 0.15 
TTP (s) 57.2 ± 41.5 73.4 ± 27.9 0.1  63.9 ± 34.0 60.5 ± 46.7 0.84 
nMITR (10–2) (s­1) 0.3 ± 0.3 1.9 ± 3.0 <0.05  0.1 ± 0.2 0.6 ± 1.0 0.13 
Wash-in slope (10–3) (s­1) 7.4 ± 10.1 7.4 ± 14.9 0.99  2.08 ± 2.90 1.9 ± 2.3 0.67 
Wash-out slope (10–3) (s­1) 1.5 ± 5.7 1.08 ± 3.40 0.51  0.2 ± 2.0 0.4 ± 1.1 0.39 
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The concentration increases by reducing the number of motion states. Therefore, the images reconstructed with 1 and 2 motion 
states show the highest concentration for the enhancement arterial curve (≈0.5 mm and 0.3 mm respectively) with higher temporal 
resolution. While those reconstructed with 3 and 4 motion states were almost the same by representing a lower concentration 
(≈0.25 mm) of the unclear arterial enhancement peak due to the lower temporal resolution. 
 
As shown previously in table 5, the displacement of the tumor clearly affects the perfusion parameters. Therefore, for a 
displacement of more than 1 cm, the movement compensation for XD-GRASP with 4 states of motion was significant. Otherwise, 
in the case of fewer displacement, it is preferable to use GRASP because no significant change has been detected in the perfusion 
parameter and thus the motion compensation was limited because there was a little movement and in addition the temporal 
resolution is more advantageous with GRASP. 
 
Our study had some limitations. It included a small sample size (11 cases with 22 tumors) which limits the conclusion that could 
be reached. Another limitation is that we tested one configuration for the number of spokes per motion state and one configuration 
on the regularization level in XD-GRASP. The used configuration followed standard parameters, but different results could be 
obtained with other configurations. 
 
Due to the limited sample size of this study, it becomes difficult to provide a clear recommendation of the optimal number of motion 
states. The recommendation could relate to the lesion displacement. Based on the presented results, we could state that using 
GRASP for lesions with low displacement is more advantageous, while XD-GRASP for larger displacements is more ideal and 
allows to generate reliable perfusion parameters 
 
 
In general, choosing the best number of motion states is more closely related to the temporal resolution and image quality and is a 
compromise between these two factors. With regards to the peak concentration of the aorta based on a previous study from our 
group (Thibodeau-Antonacci et al 2019), it was found to be 0.7 at the maximum, where in our cohort, a maximum of 0.5 on 
average was found for all subjects, but in certain case it may reach a higher value. Compared to the baseline aorta concentration, 
we can observe that even with GRASP which is one motion state, this peak value may be affected. 
 
These results overcome several limitations associated with contrast-enhanced liver MRI examinations. The XD-GRASP 
reconstruction technique provides an alternative approach to select the appropriate trade-off between image quality, temporal 
resolution and SNR. 
 
 

1. Conclusion 

In this paper, we used an XD-GRASP sequence for the evaluation of HCCs in liver cancer patients, evaluating the impact on image 
quality and quantitative DCE-MRI perfusion parameters when varying the number of respiratory motion states. This prospective 
study showed that the normalized maximum intensity time ratio, peak enhancement ratio and transfer constant from the portal 
venous plasma to the extravascular space were sensitive to the number of motion states and to the temporal resolution, yielding 
statistically significant differences compared to results using a single motion state. While a higher number of motion states 
improves CNR and SNR, the resulting lower temporal resolution can also influence quantitative parameters that capture rapid 
signal changes. Thus with lower displacement, GRASP is more advantageous with higher temporal resolution as there was no 
significant difference XD-GRASP. 
 
Therefore, XD-GRASP can be used to perform quantitative perfusion measures in the liver, but some quantitative parameters 
may be significantly modified by the number of motion states. These promising results support the pursuit of larger cohort 
studies. 
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