191 research outputs found

    Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes

    Get PDF
    The cranial neural crest (CNC) arises within the developing central nervous system, but then migrates away from the neural tube in three consecutive streams termed mandibular, hyoid and branchial, respectively, according to the order along the anteroposterior axis. While the process of neural crest emigration generally follows a conserved anterior to posterior sequence across vertebrates, we find that ray-finned fishes (bichir, sterlet, gar, and pike) exhibit several heterochronies in the timing and order of CNC emergence that influences their subsequent migratory patterns. First, emigration of the cranial neural crest in these fishes occurs prematurely compared to other vertebrates, already initiating during early neurulation and well before neural tube closure. Second, delamination of the hyoid stream occurs prior to the more anterior mandibular stream; this is associated with early morphogenesis of key hyoid structures like external gills (bichir), a large opercular flap (gar) or first forming cartilage (pike). In sterlet, the hyoid and branchial CNC cells form a single hyobranchial sheet, which later segregates in concert with second pharyngeal pouch morphogenesis. Taken together, the results show that despite generally conserved migratory patterns, heterochronic alterations in the timing of emigration and pattern of migration of CNC cells accompanies morphological diversity of ray-finned fishes

    Overexpression of primary microRNA 221/222 in acute myeloid leukemia

    Get PDF
    BACKGROUND: Acute myeloid leukemia (AML) is a hematopoietic malignancy with a dismal outcome in the majority of cases. A detailed understanding of the genetic alterations and gene expression changes that contribute to its pathogenesis is important to improve prognostication, disease monitoring, and therapy. In this context, leukemia-associated misexpression of microRNAs (miRNAs) has been studied, but no coherent picture has emerged yet, thus warranting further investigations. METHODS: The expression of 636 human miRNAs was compared between samples from 52 patients with AML and 13 healthy individuals by highly specific locked nucleic acid (LNA) based microarray technology. The levels of individual mature miRNAs and of primary miRNAs (pri-miRs) were determined by quantitative reverse transcriptase (qRT) PCR. Transfections and infections of human cell lines were performed using standard procedures. RESULTS: 64 miRNAs were significantly differentially expressed between AML and controls. Further studies on the clustered miRNAs 221 and 222, already known to act as oncogenes in other tumor types, revealed a deficiency of human myeloid cell lines to process vector derived precursor transcripts. Moreover, endogenous pri-miR-221/222 was overexpressed to a substantially higher extent than its mature products in most primary AML samples, indicating that its transcription was enhanced, but processing was rate limiting, in these cells. Comparison of samples from the times of diagnosis, remission, and relapse of AML demonstrated that pri-miR-221/222 levels faithfully reflected the stage of disease. CONCLUSIONS: Expression of some miRNAs is strongly regulated at the posttranscriptional level in AML. Pri-miR-221/222 represents a novel molecular marker and putative oncogene in this disease

    Structure Function Analysis of an ADP-ribosyltransferase Type III Effector and Its RNA-binding Target in Plant Immunity

    Get PDF
    Background: HopU1 ADP-ribosylates GRP7, suppressing plant immunity. Results: The HopU1 structure has two novel loops required for GRP7 recognition, and HopU1 ribosylates GRP7 at an arginine in position 49 disrupting its function. Conclusion: HopU1 targets a conserved arginine in GRP7, disabling its ability to bind immunity-related RNA. Significance: The mechanistic details of how HopU1 recognizes its substrate reveal how HopU1 contributes to pathogenesis

    Structure Function Analysis of an ADP-ribosyltransferase Type III Effector and Its RNA-binding Target in Plant Immunity

    Get PDF
    Background: HopU1 ADP-ribosylates GRP7, suppressing plant immunity. Results: The HopU1 structure has two novel loops required for GRP7 recognition, and HopU1 ribosylates GRP7 at an arginine in position 49 disrupting its function. Conclusion: HopU1 targets a conserved arginine in GRP7, disabling its ability to bind immunity-related RNA. Significance: The mechanistic details of how HopU1 recognizes its substrate reveal how HopU1 contributes to pathogenesis

    Bilan de la fiscalité au Québec : Édition 2019

    Get PDF

    Structure Function Analysis of an ADP-ribosyltransferase Type III Effector and Its RNA-binding Target in Plant Immunity

    Get PDF
    Background: HopU1 ADP-ribosylates GRP7, suppressing plant immunity. Results: The HopU1 structure has two novel loops required for GRP7 recognition, and HopU1 ribosylates GRP7 at an arginine in position 49 disrupting its function. Conclusion: HopU1 targets a conserved arginine in GRP7, disabling its ability to bind immunity-related RNA. Significance: The mechanistic details of how HopU1 recognizes its substrate reveal how HopU1 contributes to pathogenesis

    UNC93B1 Mediates Host Resistance to Infection with Toxoplasma gondii

    Get PDF
    UNC93B1 associates with Toll-Like Receptor (TLR) 3, TLR7 and TLR9, mediating their translocation from the endoplasmic reticulum to the endolysosome, hence allowing proper activation by nucleic acid ligands. We found that the triple deficient ‘3d’ mice, which lack functional UNC93B1, are hyper-susceptible to infection with Toxoplasma gondii. We established that while mounting a normal systemic pro-inflammatory response, i.e. producing abundant MCP-1, IL-6, TNFα and IFNγ, the 3d mice were unable to control parasite replication. Nevertheless, infection of reciprocal bone marrow chimeras between wild-type and 3d mice with T. gondii demonstrated a primary role of hemopoietic cell lineages in the enhanced susceptibility of UNC93B1 mutant mice. The protective role mediated by UNC93B1 to T. gondii infection was associated with impaired IL-12 responses and delayed IFNγ by spleen cells. Notably, in macrophages infected with T. gondii, UNC93B1 accumulates on the parasitophorous vacuole. Furthermore, upon in vitro infection the rate of tachyzoite replication was enhanced in non-activated macrophages carrying mutant UNC93B1 as compared to wild type gene. Strikingly, the role of UNC93B1 on intracellular parasite growth appears to be independent of TLR function. Altogether, our results reveal a critical role for UNC93B1 on induction of IL-12/IFNγ production as well as autonomous control of Toxoplasma replication by macrophages

    CD200R1 Supports HSV-1 Viral Replication and Licenses Pro-Inflammatory Signaling Functions of TLR2

    Get PDF
    The CD200R1:CD200 axis is traditionally considered to limit tissue inflammation by down-regulating pro-inflammatory signaling in myeloid cells bearing the receptor. We generated CD200R1−/− mice and employed them to explore both the role of CD200R1 in regulating macrophage signaling via TLR2 as well as the host response to an in vivo, TLR2-dependent model, herpes simplex virus 1 (HSV-1) infection. CD200R1−/− peritoneal macrophages demonstrated a 70–75% decrease in the generation of IL-6 and CCL5 (Rantes) in response to the TLR2 agonist Pam2CSK4 and to HSV-1. CD200R1−/− macrophages could neither up-regulate the expression of TLR2, nor assemble a functional inflammasome in response to HSV-1. CD200R1−/− mice were protected from HSV-1 infection and exhibited dysfunctional TLR2 signaling. Finally, both CD200R1−/− mice and CD200R1−/− fibroblasts and macrophages showed a markedly reduced ability to support HSV-1 replication. In summary, our data demonstrate an unanticipated and novel requirement for CD200R1 in “licensing” pro-inflammatory functions of TLR2 and in limiting viral replication that are supported by ex vivo and in vivo evidence
    corecore