71 research outputs found

    Estudio e integración de Sistemas de Combate Autónomos en unidades de Infantería

    Get PDF
    El avance de la tecnología ha provocado grandes cambios en la forma de combatir de los ejércitos, provocando que los ejércitos que mejor se supieran adaptar a ellos dominaran al resto. Actualmente, el auge de la inteligencia artificial y los avances en robótica han dado lugar a los Sistemas de Armas Autónomos (AWS). Este avance implica un posible nuevo cambio en la forma de combatir, por lo que es justificada la necesidad de estudiarlos y buscar una integración en el Ejército.En este trabajo se ha realizado un análisis de la tecnología que compone a los AWS para entender su funcionamiento y limitaciones, y también el marco legal y su origen, los debates internacionales sobre su uso, para esclarecer a lo que se pueden llegar a convertir estos sistemas. Finalmente se ha realizado un estudio general del arma de Infantería y de diferentes modelos que pueden ser integrados en las unidades para, a través de un análisis DAFO llegar al resultado del sistema más adecuado.De este estudio se concluye que las limitaciones tecnológicas y legales actuales provocan la necesidad de contar con operadores humanos, no alcanzándose el grado de autonomía total. Finalmente, para las unidades de Infantería ligeras el sistema más adecuado ha sido el modelo THeMIS y para las mecanizadas y acorazadas el Type-X Combat. Ambos son de la empresa Milrem Robotics y se han considerado los más adecuados tras el estudio de las debilidades y fortalezas de cada unidad.<br /

    Práctica de desarrollo de interfaces hardware/software para la monitorización del estado de un PC

    Get PDF
    Este artículo presenta una práctica laboratorio impartida mediante una metodología de aprendizaje basado en proyectos (ABP) [1] para dotar de la capacidad de diseñar y desarrollar un monitor del estado de un ordenador, integrado en un sistema empotrado que se comunica con una aplicación de escritorio, a nuestros alumnos de la asignatura de Diseño de Microcontroladores (DM) en el contexto del Máster en Ingeniería de Computadores y Redes. Esta práctica abarca la comunicación Hardware/ Software entre un microcontrolador con un núcleo Cortex-M4 y una aplicación software escrita en lenguaje C# usando el entorno Visual Studio Community 2015 a través de puertos series virtuales (VCP). Esta práctica está enfocada como un proyecto que los alumnos han de ir realizando desde cero, avanzando mediante la consecución de hitos, hasta conseguir obtener un sistema final. El sistema a desarrollar se divide en dos partes, por un lado tenemos un PC con un sistema operativo de la familia Windows, en el que se construye una aplicación visual mediante Windows Forms, la cual obtiene información del sistema de forma periódica y la envía al microcontrolador mediante comandos usando el puerto serie (USB o comunicación Bluetooth). Por otro lado tenemos un microcontrolador de la familia STM32 que dispone de un display LCD ejecutando una plataforma completamente libre, .NET Micro Framework, la cual recibe a través del puerto serie la información obtenida gracias a la aplicación software del PC y la muestra en la pantalla, obteniendo así una herramienta de monitorización del PC sin tener que estar conectado físicamente a éste. El desarrollo de este tipo de proyectos se añade la dificultad de la necesidad del uso de diferentes herramientas para el desarrollo del firmware y del software en paralelo, de manera incremental, y enfocadas para ámbitos de uso muy distintos. Esta práctica ha tenido una gran acogida por parte de los alumnos, ya que les ha servido de ejemplo del desarrollo de firmware para un microcontrolador usando la plataforma .NET MF y de su comunicación con el PC por medio de una aplicación visual.This manuscript presents a practical laboratory session imparted using a project-based learning methodology (PBL) to provide the capacity of designing and developing a computer status monitoring device, integrated in an embedded system that communicates with a desktop software tool, to our students in the Computer Engineering Master’s Degree. This practice session encompasses Hardware/ Software communication between a microcontroller with a Cortex-M4 kernel and a desktop software application through virtual COM ports (VCP) written in C# using Visual Studio Community 2015. This lab session is focused as a project that students must be making from scratch by achieving and completing some milestones to obtain a final functional system. The project is divided into two different parts. First, we have a Windows PC where a visual software application that gathers information from the system and sends it periodically to the microcontroller (USB or Bluetooth) has to be built using Windows Forms. On the other hand, we have a microcontroller from the STM32 family that has a 2.4’ LCD display executing .NET Micro Framework that receives the information obtained from the PC through the serial port and displays it in the screen. This way, students create a computer status monitoring tool that does not need to be connected physically to it to receive the information. The development of this project is added to the need of using different tools for firmware and software development, focused to very different fields of use. This practice has been well received by the students, because it has served as an example of the firmware development for a microcontroller using the .NET MF platform as well as the communication between the PC and the microcontroller using a visual software application

    Influence of Management Practices on Economic and Enviromental Performance of Crops. A Case Study in Spanish Horticulture

    Full text link
    This article assesses the effect of management practices on the environmental and economic performance of tigernut production. Tigernut is a horticultural crop grown in a very limited and homogeneous area. Results show that the environmental variability among farms was greater than variability in costs. A selection of practices can reduce impacts per kilogram tigernut by factors 252.5 (abiotic depletion), 33 (aquatic ecotoxicity), or 6 (global warming) and costs by factors of between 2 and 3. The analysis shows a positive relationship between economic and environmental performance. Results highlight how proper management leads to both relatively low environmental impacts and costs.The authors acknowledge the support of the Conselleria d'Empresa, Universitat i Ciencia de la Generalitat Valenciana (GV/2007/211) and the Universitat Politecnica de Valencia (PAID05-08-316).Fenollosa Ribera, ML.; Ribal Sanchis, FJ.; Lidón Cerezuela, AL.; Bautista Carrascosa, I.; Juraske, R.; Clemente Polo, G.; Sanjuán Pellicer, MN. (2014). Influence of Management Practices on Economic and Enviromental Performance of Crops. A Case Study in Spanish Horticulture. Agroecology and Sustainable Food Systems. 38(6):635-659. https://doi.org/10.1080/21683565.2014.896302635659386De Backer, E., Aertsens, J., Vergucht, S., & Steurbaut, W. (2009). Assessing the ecological soundness of organic and conventional agriculture by means of life cycle assessment (LCA). British Food Journal, 111(10), 1028-1061. doi:10.1108/00070700910992916Basset-Mens, C., Anibar, L., Durand, P., & van der Werf, H. M. G. (2006). Spatialised fate factors for nitrate in catchments: Modelling approach and implication for LCA results. Science of The Total Environment, 367(1), 367-382. doi:10.1016/j.scitotenv.2005.12.026Basset-Mens, C., Kelliher, F. M., Ledgard, S., & Cox, N. (2009). Uncertainty of global warming potential for milk production on a New Zealand farm and implications for decision making. The International Journal of Life Cycle Assessment, 14(7), 630-638. doi:10.1007/s11367-009-0108-2Blengini, G. A., & Busto, M. (2009). The life cycle of rice: LCA of alternative agri-food chain management systems in Vercelli (Italy). Journal of Environmental Management, 90(3), 1512-1522. doi:10.1016/j.jenvman.2008.10.006Carlsson Reich, M. (2005). Economic assessment of municipal waste management systems—case studies using a combination of life cycle assessment (LCA) and life cycle costing (LCC). Journal of Cleaner Production, 13(3), 253-263. doi:10.1016/j.jclepro.2004.02.015Contreras, W. A., Lidón, A. L., Ginestar, D., & Bru, R. (2009). Compartmental model for nitrogen dynamics in citrus orchards. Mathematical and Computer Modelling, 50(5-6), 794-805. doi:10.1016/j.mcm.2009.05.008Prudêncio da Silva, V., van der Werf, H. M. G., Spies, A., & Soares, S. R. (2010). Variability in environmental impacts of Brazilian soybean according to crop production and transport scenarios. Journal of Environmental Management, 91(9), 1831-1839. doi:10.1016/j.jenvman.2010.04.001Jan, P., Dux, D., Lips, M., Alig, M., & Dumondel, M. (2012). On the link between economic and environmental performance of Swiss dairy farms of the alpine area. The International Journal of Life Cycle Assessment, 17(6), 706-719. doi:10.1007/s11367-012-0405-zJuraske, R., & Sanjuán, N. (2011). Life cycle toxicity assessment of pesticides used in integrated and organic production of oranges in the Comunidad Valenciana, Spain. Chemosphere, 82(7), 956-962. doi:10.1016/j.chemosphere.2010.10.081Lidón, A., Ramos, C., & Rodrigo, A. (1999). Comparison of drainage estimation methods in irrigated citrus orchards. Irrigation Science, 19(1), 25-36. doi:10.1007/s002710050068McDevitt, J. E., & Milà i Canals, L. (2011). Can life cycle assessment be used to evaluate plant breeding objectives to improve supply chain sustainability? A worked example using porridge oats from the UK. International Journal of Agricultural Sustainability, 9(4), 484-494. doi:10.1080/14735903.2011.584473Michelsen, J. (2001). Recent Development and Political Acceptance of Organic Farming in Europe. Sociologia Ruralis, 41(1), 3-20. doi:10.1111/1467-9523.00167Meisterling, K., Samaras, C., & Schweizer, V. (2009). Decisions to reduce greenhouse gases from agriculture and product transport: LCA case study of organic and conventional wheat. Journal of Cleaner Production, 17(2), 222-230. doi:10.1016/j.jclepro.2008.04.009Mouron, P., Nemecek, T., Scholz, R. W., & Weber, O. (2006). Management influence on environmental impacts in an apple production system on Swiss fruit farms: Combining life cycle assessment with statistical risk assessment. Agriculture, Ecosystems & Environment, 114(2-4), 311-322. doi:10.1016/j.agee.2005.11.020Mouron, P., Scholz, R. W., Nemecek, T., & Weber, O. (2006). Life cycle management on Swiss fruit farms: Relating environmental and income indicators for apple-growing. Ecological Economics, 58(3), 561-578. doi:10.1016/j.ecolecon.2005.08.007Pascual, B., Maroto, J. V., LóPez-Galarza, Sa., Sanbautista, A., & Alagarda, J. (2000). Chufa (Cyperus esculentus L. var. sativus boeck.): An unconventional crop. studies related to applications and cultivation. Economic Botany, 54(4), 439-448. doi:10.1007/bf02866543Ribal, J., Sanjuán, N., Clemente, G., & Fenollosa, M. L. (2011). Medición de la ecoeficiencia en procesos productivos en el sector agrario. Caso de estudio sobre producción de cítricos. Economía Agraria y Recursos Naturales, 9(2), 125. doi:10.7201/earn.2009.02.06Rosenbaum, R. K., Bachmann, T. M., Gold, L. S., Huijbregts, M. A. J., Jolliet, O., Juraske, R., … Hauschild, M. Z. (2008). USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. The International Journal of Life Cycle Assessment, 13(7), 532-546. doi:10.1007/s11367-008-0038-4Sanjuan, N., Ribal, J., Clemente, G., & Fenollosa, M. L. (2011). Measuring and Improving Eco-efficiency Using Data Envelopment Analysis. Journal of Industrial Ecology, 15(4), 614-628. doi:10.1111/j.1530-9290.2011.00347.xSanjuan, N., Ubeda, L., Clemente, G., Mulet, A., & Girona, F. (2005). LCA of integrated orange production in the Comunidad Valenciana (Spain). International Journal of Agricultural Resources, Governance and Ecology, 4(2), 163. doi:10.1504/ijarge.2005.007198Saxton, K. E., Rawls, W. J., Romberger, J. S., & Papendick, R. I. (1986). Estimating Generalized Soil-water Characteristics from Texture1. Soil Science Society of America Journal, 50(4), 1031. doi:10.2136/sssaj1986.03615995005000040039xThomassen, M. A., Dolman, M. A., van Calker, K. J., & de Boer, I. J. M. (2009). Relating life cycle assessment indicators to gross value added for Dutch dairy farms. Ecological Economics, 68(8-9), 2278-2284. doi:10.1016/j.ecolecon.2009.02.011Tzilivakis, J., Jaggard, K., Lewis, K. A., May, M., & Warner, D. J. (2005). Environmental impact and economic assessment for UK sugar beet production systems. Agriculture, Ecosystems & Environment, 107(4), 341-358. doi:10.1016/j.agee.2004.12.016Van der Werf, H. M. G., Kanyarushoki, C., & Corson, M. S. (2009). An operational method for the evaluation of resource use and environmental impacts of dairy farms by life cycle assessment. Journal of Environmental Management, 90(11), 3643-3652. doi:10.1016/j.jenvman.2009.07.003Van Zeijts, H., Leneman, H., & Wegener Sleeswijk, A. (1999). Fitting fertilisation in LCA: allocation to crops in a cropping plan. Journal of Cleaner Production, 7(1), 69-74. doi:10.1016/s0959-6526(98)00040-7Venkat, K. (2012). Comparison of Twelve Organic and Conventional Farming Systems: A Life Cycle Greenhouse Gas Emissions Perspective. Journal of Sustainable Agriculture, 36(6), 620-649. doi:10.1080/10440046.2012.67237

    The treatment with the probiotic Shewanella putrefaciens Pdp11 of sepecimens of Solea senegalensis exposed to high stocking densities to enhance their resistance to disease

    Get PDF
    Aquaculture industry exposes fish to acute stress events, such as high stocking density, and a link between stress and higher susceptibility to diseases has been concluded. Several studies have demonstrated increased stress tolerance of fish treated with probiotics, but the mechanisms involved have not been elucidated. Shewanella putrefaciens Pdp11 is a strain isolated from healthy gilthead seabream (Sparus aurata L.) and it is considered as probiotics. The aim of this study was to evaluate the effect of the dietary administration of this probiotics on the stress tolerance of Solea senegalensis specimens farmed under high stocking density (PHD) compared to a group fed a commercial diet and farmed under the same conditions (CHD). In addition, during the experiment, a natural infectious outbreak due to Vibrio species affected fish farmed under crowding conditions. Changes in the microbiota and histology of intestine and in the transcription of immune response genes were evaluated at 19 and 30 days of the experiment. Mortality was observed after 9 days of the beginning of the experiment in CHD and PHD groups, it being higher in the CHD group. Fish farmed under crowding stress showed reduced expression of genes at 19 day probiotic feeding. On the contrary, a significant increase in immune related gene expression was detected in CHD fish at 30 day, whereas the gene expression in fish from PHD group was very similar to that showed in specimens fed and farmed with the conventional conditions. In addition, the dietary administration of S. putrefaciens Pdp11 produced an important modulation of the intestinal microbiota, which was significantly correlated with the high number of goblet cells detected in fish fed the probiotic diet.Postprin

    Long -term feeding with high plant protein based diets in gilthead seabream (Sparus aurata, L.) leads to changes in the inflammatory and immune related gene expression at intestinal level

    Full text link
    [EN] Background: In order to ensure sustainability of aquaculture production of carnivourous fish species such as the gilthead seabream (Sparus aurata, L.), the impact of the inclusion of alternative protein sources to fishmeal, including plants, has been assessed. With the aim of evaluating long-term effects of vegetable diets on growth and intestinal status of the on-growing gilthead seabream (initial weight = 129 g), three experimental diets were tested: a strict plant protein-based diet (VM), a fishmeal based diet (FM) and a plant protein-based diet with 15% of marine ingredients (squid and krill meal) alternative to fishmeal (VM+). Intestines were sampled after 154 days. Besides studying growth parameters and survival, the gene expression related to inflammatory response, immune system, epithelia integrity and digestive process was analysed in the foregut and hindgut sections, as well as different histological parameters in the foregut. Results: There were no differences in growth performance (p = 0.2703) and feed utilization (p = 0.1536), although a greater fish mortality was recorded in the VM group (p = 0.0141). In addition, this group reported a lower expression in genes related to pro-inflammatory response, as Interleukine-1 beta (il1 beta, p = 0.0415), Interleukine-6 (il6, p = 0.0347) and cyclooxigenase-2 (cox2, p = 0.0014), immune-related genes as immunoglobulin M (igm, p = 0.0002) or bacterial defence genes as alkaline phosphatase (alp, p = 0.0069). In contrast, the VM+ group yielded similar survival rate to FM (p = 0.0141) and the gene expression patterns indicated a greater induction of the inflammatory and immune markers (il1 beta, cox2 and igm). However, major histological changes in gut were not detected. Conclusions: Using plants as the unique source of protein on a long term basis, replacing fishmeal in aqua feeds for gilthead seabream, may have been the reason of a decrease in the level of different pro-inflammatory mediators (il1 beta, il6 and cox2) and immune-related molecules (igm and alp), which reflects a possible lack of local immune response at the intestinal mucosa, explaining the higher mortality observed. Krill and squid meal inclusion in vegetable diets, even at low concentrations, provided an improvement in nutrition and survival parameters compared to strictly plant protein based diets as VM, maybe explained by the maintenance of an effective immune response throughout the assay.The research has been partially funded by Vicerrectorat d'Investigacio, Innovacio i Transferencia of the Universitat Politecnica de Valencia, which belongs to the project Aquaculture feed without fishmeal (SP20120603). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.Estruch-Cucarella, G.; Collado, MC.; Monge-Ortiz, R.; Tomas-Vidal, A.; Jover Cerdá, M.; Peñaranda, D.; Perez Martinez, G.... (2018). Long -term feeding with high plant protein based diets in gilthead seabream (Sparus aurata, L.) leads to changes in the inflammatory and immune related gene expression at intestinal level. BMC Veterinary Research. 14. https://doi.org/10.1186/s12917-018-1626-6S14Hardy RW. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquac Res. 2010;41:770–6.Martínez-Llorens S, Moñino AV, Vidal AT, Salvador VJM, Pla Torres M, Jover Cerdá M, et al. Soybean meal as a protein source in gilthead sea bream (Sparus aurata L.) diets: effects on growth and nutrient utilization. Aquac Res. 2007;38(1):82–90.Tacon AGJ, Metian M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture. 2008;285:146–58.Bonaldo A, Roem AJ, Fagioli P, Pecchini A, Cipollini I, Gatta PP. Influence of dietary levels of soybean meal on the performance and gut histology of gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.). Aquac Res. 2008;39(9):970–8.Kissil G, Lupatsch I. Successful replacement of fishmeal by plant proteins in diets for the gilthead seabream, Sparus Aurata L. Isr J Aquac – Bamidgeh. 2004;56(3):188–99.Monge-Ortíz R, Martínez-Llorens S, Márquez L, Moyano FJ, Jover-Cerdá M, Tomás-Vidal A. Potential use of high levels of vegetal proteins in diets for market-sized gilthead sea bream (Sparus aurata). Arch Anim Nutr. 2016;70(2):155–72.Santigosa E, Sánchez J, Médale F, Kaushik S, Pérez-Sánchez J, Gallardo MA. Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture. 2008;282:68–74.Santigosa E, García-Meilán I, Valentin JM, Pérez-Sánchez J, Médale F, Kaushik S, et al. Modifications of intestinal nutrient absorption in response to dietary fish meal replacement by plant protein sources in sea bream (Sparus aurata) and rainbow trout (Onchorynchus mykiss). Aquaculture. 2011;317:146–54.Sitjá-Bobadilla A, Peña-Llopis S, Gómez-Requeni P, Médale F, Kaushik S, Pérez-Sánchez J. Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture. 2005;249:387–400.Martínez-Llorens S, Baeza-Ariño R, Nogales-Mérida S, Jover-Cerdá M, Tomás-Vidal A. Carob seed germ meal as a partial substitute in gilthead sea bream (Sparus aurata) diets: amino acid retention, digestibility, gut and liver histology. Aquaculture. 2012;338-341:124–33.Baeza-Ariño R, Martínez-Llorens S, Nogales-Mérida S, Jover-Cerda M, Tomás-Vidal A. Study of liver and gut alterations in sea bream, Sparus aurata L., fed a mixture of vegetable protein concentrates. Aquac Res. 2014;47(2):460–71.Estruch G, Collado MC, Peñaranda DS, Tomás Vidal A, Jover Cerdá M, Pérez Martínez G, et al. Impact of fishmeal replacement in diets for gilthead sea bream (Sparus aurata) on the gastrointestinal microbiota determined by pyrosequencing the 16S rRNA gene. PLoS One. 2015;10(8):e0136389. https://doi.org/10.1371/journal.pone.0136389 .Fekete SG, Kellems RO. Interrelationship of feeding with immunity and parasitic infection: a review. Vet Med. 2007;52(4):131–43.Kiron V. Fish immune system and its nutritional modulation for preventive health care. Anim Feed Sci Technol. 2012;173(1–2):111–33.Minghetti M, Drieschner C, Bramaz N, Schug H, Schirmer K. A fish intestinal epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) cell line, RTgutGC. Cell Biol Toxicol. 2017;33:539–55.Cerezuela R, Meseguer J, Esteban MÁ. Effects of dietary inulin, Bacillus subtilis and microalgae on intestinal gene expression in gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2013;34(3):843–8.Couto A, Kortner TM, Penn M, Bakke AM, Krogdahl O-TA, et al. Effects of dietary soy saponins and phytosterols on gilthead sea bream (Sparus aurata) during the on-growing period. Anim Feed Sci Technol. 2014;198:203–14.Estensoro I, Calduch-Giner JA, Kaushik S, Pérez-Sánchez J, Sitjá-Bobadilla A. Modulation of the IgM gene expression and IgM immunoreactive cell distribution by the nutritional background in gilthead sea bream (Sparus aurata) challenged with Enteromyxum leei (Myxozoa). Fish Shellfish Immunol. 2012;33(2):401–10.Pérez-Sánchez J, Estensoro I, Redondo MJ, Calduch-Giner JA, Kaushik S, Sitjà-Bobadilla A. Mucins as diagnostic and prognostic biomarkers in a fish-parasite model: transcriptional and functional analysis. PLoS One. 2013;8(6):e65457.Reyes-Becerril M, Guardiola F, Rojas M, Ascencio-Valle F, Esteban MÁ. Dietary administration of microalgae Navicula sp. affects immune status and gene expression of gilthead seabream (Sparus aurata). Fish Shellfish Immunol. 2013;35(3):883–9.Pérez-Sánchez J, Benedito-Palos L, Estensoro I, Petropoulos Y, Calduch-Giner JA, Browdy CL, et al. Effects of dietary NEXT ENHANCE ® 150 on growth performance and expression of immune and intestinal integrity related genes in gilthead sea bream (Sparus aurata L.). Fish Shellfish Immunol. 2015;44:117–28.Estensoro I, Ballester-Lozano G, Benedito-Palos L, Grammes F, Martos-Sitcha JA, Mydland L-T, et al. Dietary butyrate helps to restore the intestinal status of a marine teleost (Sparus aurata) fed extreme diets low in fish meal and fish oil. PLoS One. 2016;11(11):1–21.Torrecillas S, Caballero MJ, Mompel D, Montero D, Zamorano MJ, Robaina L, et al. Disease resistance and response against Vibrio anguillarum intestinal infection in European seabass (Dicentrarchus labrax) fed low fish meal and fish oil diets. Fish Shellfish Immunol. 2017;67:302–11.Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C T method. Nat Protoc. 2008;3(6):1101–8.Omnes MH, Silva FCP, Moriceau J, Aguirre P, Kaushik S, Gatesoupe F-J. Influence of lupin and rapeseed meals on the integrity of digestive tract and organs in gilthead seabream (Sparus aurata L.) and goldfish (Carassius auratus L.) juveniles. Aquac Nutr. 2015;21:223–33.Francis G, Makkar HPS, Becker K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture. 2001;199:197–227.Gatlin DM III, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, et al. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac Res. 2007;38:551–79.Kader MA, Bulbul M, Koshio S, Ishikawa M, Yokoyama S, Nguyen BT, et al. Effect of complete replacement of fishmeal by dehulled soybean meal with crude attractants supplementation in diets for red sea bream, Pagrus major. Aquaculture. 2012;350-353:109–16.Gómez-Requeni P, Mingarro M, Calduch-Giner JA, Médale F, Martin SAM, Houlihan DF, et al. Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture. 2004;232(1–4):493–510.Kader MA, Koshio S, Ishikawa M, Yokoyama S, Bulbul M. Supplemental effects of some crude ingredients in improving nutritive values of low fishmeal diets for red sea bream, Pagrus major. Aquaculture. 2010;308(3–4):136–44.Mai K, Li H, Ai Q, Duan Q, Xu W, Zhang C, et al. Effects of dietary squid viscera meal on growth and cadmium accumulation in tissues of Japanese seabass, Lateolabrax japonicus (Cuvier 1828). Aquac Res. 2006;37(11):1063–9.Peres H, Oliva-Teles A. The optimum dietary essential amino acid profile for gilthead seabream (Sparus aurata) juveniles. Aquaculture. 2009;296(1–2):81–6.Cho CY, Slinger SJ, Bayley HS. Bioenergetics of salmonid fishes: energy intake, expenditure and productivity. Comp Biochem Physiol Part B. 1982;73(1):25–41.Venou B, Alexis MN, Fountoulaki E, Haralabous J. Effects of extrusion and inclusion level of soybean meal on diet digestibility , performance and nutrient utilization of gilthead sea bream ( Sparus aurata ). Aquaculture. 2006;261:343–56.Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-excel-based tool using pair-wise correlations. Biotechnol Lett. 2004;26:509–15.Terova G, Robaina L, Izquierdo M, Cattaneo A, Molinari S, Bernardini G, et al. PepT1 mRNA expression levels in sea bream (Sparus aurata) fed different plant protein sources. Springerplus. 2013;2:17.Bates JM, Akerlund J, Mittge E, Guillemin K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe. 2007;2(6):371–82.Adamidou S, Nengas I, Henry M, Grigorakis K, Rigos G, Nikolopoulou D, et al. Growth, feed utilization, health and organoleptic characteristics of European seabass (Dicentrarchus labrax) fed extruded diets including low and high levels of three different legumes. Aquaculture. 2009;293(3–4):263–71.Daprà F, Gai F, Costanzo MT, Maricchiolo G, Micale V, Sicuro B, et al. Rice protein-concentrate meal as a potential dietary ingredient in practical diets for blackspot seabream Pagellus bogaraveo: a histological and enzymatic investigation. J Fish Biol. 2009;74(4):773–89.Overland M, Sorensen M, Storebakken T, Penn M, Krogdahl A, Skrede A. Pea protein concentrate substituting fish meal or soybean meal in diets for Atlantic salmon (Salmo salar)-effect on growth performance, nutrient digestibility, carcass composition, gut health, and physical feed quality. Aquaculture. 2009;288(3–4):305–11.Penn MH, Bendiksen EA, Campbell P, Krogdahl AS. High level of dietary pea protein concentrate induces enteropathy in Atlantic salmon (Salmo salar L.). Aquaculture. 2011;310(3–4):267–73.Hedrera MI, Galdames JA, Jimenez-Reyes MF, Reyes AE, Avendaño-Herrera R, Romero J, et al. Soybean meal induces intestinal inflammation in zebrafish larvae. PLoS One. 2013;8(7):1–10.Kokou F, Sarropoulou E, Cotou E, Rigos G, Henry M, Alexis M. Effects of fish meal replacement by a soybean protein on growth, histology, selected immune and oxidative status markers of Gilthead Sea bream, Sparus aurata. J World Aquac Soc. 2015;46(2):115–28.Kokou F, Sarropoulou E, Cotou E, Kentouri M, Alexis M, Rigos G. Effects of graded dietary levels of soy protein concentrate supplemented with methionine and phosphate on the immune and antioxidant responses of gilthead sea bream (Sparus aurata L.). Fish Shellfish Immunol. 2017;64:111–21.Calduch-Giner JA, Sitjà-Bobadilla A, Davey GC, Cairns MT, Kaushik S, Pérez-Sánchez J. Dietary vegetable oils do not alter the intestine transcriptome of gilthead sea bream (Sparus aurata), but modulate the transcriptomic response to infection with Enteromyxum leei. BMC Genomics. 2012;13(1):470.Piazzon MC, Galindo-Villegas J, Pereiro P, Estensoro I, Calduch-Giner JA, Gómez-Casado E, et al. Differential modulation of IgT and IgM upon parasitic, bacterial, viral, and dietary challenges in a perciform fish. Front Immunol. 2016;7. Article 637. https://doi.org/10.3389/fimmu.2016.00637 .Salinas I, Zhang Y, Sunyer JO. Mucosal immunoglobulins and B cells of teleost fish. Dev Comp Immunol. 2011;35(12):1346–65.Krogdahl A, Bakke-McKellep AM, Roed KH, Baeverfjord G. Feeding Atlantic salmon Salmo salar L. soybean products: effects on disease resistance (furunculosis), and lysozyme and IgM levels in the intestinal mucosa. Aquac Nutr. 2000;6:77–84.Chasiotis H, Effendi JC, Kelly SP. Occludin expression in goldfish held in ion-poor water. J Comp Physiol B Biochem Syst Environ Physiol. 2009;179(2):145–54.Chen KT, Malo MS, Beasley-Topliffe LK, Poelstra K, Millan JL, Mostafa G, et al. A role for intestinal alkaline phosphatase in the maintenance of local gut immunity. Dig Dis Sci. 2011;56(4):1020–7.Vaishnava S, Hooper LV. Alkaline phosphatase: keeping the peace at the gut epithelial surface. Cell Host Microbe. 2007;2(6):365–7.Tort L. Stress and immune modulation in fish. Dev Comp Immunol [internet]. Elsevier Ltd. 2011;35(12):1366–75.Martin SAM, Król E. Nutrigenomics and immune function in fish: new insights from omics technologies. Dev Comp Immunol. 2017;75:86–98.Burrells C, Williams PD, Southgate PJ, Crampton VO. Immunological , physiological and pathological responses of rainbow trout (Oncorhynchus mykiss) to increasing dietary concentrations of soybean proteins. Vet Immunol Immunopathol. 1999;72:277–88.Sahlmann C, Sutherland BJG, Kortner TM, Koop BF, Krogdahl Å, Bakke AM. Early response of gene expression in the distal intestine of Atlantic salmon (Salmo salar L.) during the development of soybean meal induced enteritis. Fish Shellfish Immunol. 2013;34(2):599–609.Esteban MÁ, Cuesta A, Ortuño J, Meseguer J. Immunomodulatory effects of dietary intake of chitin on gilthead seabream ( Sparus aurata L .) innate immune system. Fish Shellfish Immunol. 2001;11:303–15.Storebakken T, Kvien IS, Shearer KD, Grisdale-Helland B, Helland SJ. Estimation of gastrointestinal evacuation rate in Atlantic salmon (Salmo salar) using inert markers and collection of faeces by sieving: evacuation of diets with fish meal, soybean meal or bacterial meal. Aquaculture. 1999;172(3–4):291–9.Olsen RE, Myklebust R, Ringø E, Mayhew TM. The influences of dietary linseed oil and saturated fatty acids on caecal enterocytes in Arctic char (Salvelinus alpinus L.): a quantitative ultrastructural study. Fish Physiol Biochem. 2000;22(3):207–16.Heikkinen J, Vielma J, Kemiläinen O, Tiirola M, Eskelinen P, Kiuru T, et al. Effects of soybean meal based diet on growth performance, gut histopathology and intestinal microbiota of juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture. 2006;261(1):259–68.Krogdahl A, Bakke-McKellep AM, Baeverfjord G. Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L.). Aquac Nutr. 2003;9:361–71.Cerezuela R, Fumanal M, Tapia-Paniagua ST, Meseguer J, Moriñigo MA, Esteban MA. Changes in intestinal morphology and microbiota caused by dietary administration of inulin and Bacillus subtilis in gilthead sea bream (Sparus aurata L.) specimens. Fish Shellfish Immunol. 2013;34(5):1063–70.Cerezuela R, Fumanal M, Tapia-Paniagua ST, Meseguer J, Moriñigo MÁ, Esteban MÁ. Histological alterations and microbial ecology of the intestine in gilthead seabream (Sparus aurata L.) fed dietary probiotics and microalgae. Cell Tissue Res. 2012;350(3):477–89.Deplancke B, Gaskins HR. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr. 2001;73(suppl):1131S–41S.Kokou F, Rigos G, Henry M, Kentouri M, Alexis M. Growth performance, feed utilization and non-specific immune response of gilthead sea bream (Sparus aurata L.) fed graded levels of a bioprocessed soybean meal. Aquaculture. 2012;364-365:74–81

    The treatment with the probiotic Shewanella putrefaciens Pdp11 of sepecimens of Solea senegalensis exposed to high stocking densities to enhance their resistance to disease

    Get PDF
    Aquaculture industry exposes fish to acute stress events, such as high stocking density, and a link between stress and higher susceptibility to diseases has been concluded. Several studies have demonstrated increased stress tolerance of fish treated with probiotics, but the mechanisms involved have not been elucidated. Shewanella putrefaciens Pdp11 is a strain isolated from healthy gilthead seabream (Sparus aurata L.) and it is considered as probiotics. The aim of this study was to evaluate the effect of the dietary administration of this probiotics on the stress tolerance of Solea senegalensis specimens farmed under high stocking density (PHD) compared to a group fed a commercial diet and farmed under the same conditions (CHD). In addition, during the experiment, a natural infectious outbreak due to Vibrio species affected fish farmed under crowding conditions. Changes in the microbiota and histology of intestine and in the transcription of immune response genes were evaluated at 19 and 30 days of the experiment. Mortality was observed after 9 days of the beginning of the experiment in CHD and PHD groups, it being higher in the CHD group. Fish farmed under crowding stress showed reduced expression of genes at 19 day probiotic feeding. On the contrary, a significant increase in immune related gene expression was detected in CHD fish at 30 day, whereas the gene expression in fish from PHD group was very similar to that showed in specimens fed and farmed with the conventional conditions. In addition, the dietary administration of S. putrefaciens Pdp11 produced an important modulation of the intestinal microbiota, which was significantly correlated with the high number of goblet cells detected in fish fed the probiotic diet.S

    Effect of dietary supplementation of palm fruit extracts on the transcriptomes of growth, antioxidant enzyme and immune-related genes in common carp (Cyprinus carpio) fingerlings

    No full text
    This study investigates the effects of date palm extracts [DPE] (Phoenix dactylifera L. Arecaceae) on growth, immune function and antioxidant system in common carp fingerlings (Cyprinus carpio). One hundred and twenty fish (4.06 ± 0.13 g) were divided into six groups fed on control diet or diets containing 200 mL kg−1 DPE for 8 weeks. At the end of feeding trial, the expression of different genes was measured. Selected genes were grouped into three categories: growth factor genes in brain and liver [growth hormone (GH), insulin-like growth factors I and II (IGF-I and IGF-II), antioxidant-related genes in liver [glutathione S-transferase-alpha (GST-α), glutathione reductase (GR) and glutathione peroxidase genes (GPX)] and immune-related genes in head kidney [interleukin-8 (IL-8), interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β) genes]. The relative expression of the growth-related genes in fish fed DPE showed no significant increase compared to control group (P > 0.05). On the other hand, DPE altered the expression of genes encoding antioxidants enzymes in liver of fingerlings which was statistically significant with respect to the control samples in case GPX (P < 0.05). Also, DPE caused remarkable increases in the expression of the immune-related genes (IL-8, IL-10 and TGF-β) analysed on head kidney of common carp fingerlings compared to the control group (P < 0.05). In conclusion, it can be suggested that administration of DPE in early stages of common carp culture can promote immune efficacy and increase the antioxidant activity. © 2016 John Wiley & Sons Lt
    corecore