2,925 research outputs found

    Phenotype standardization for drug-induced kidney disease.

    Get PDF
    Drug-induced kidney disease is a frequent cause of renal dysfunction; however, there are no standards to identify and characterize the spectrum of these disorders. We convened a panel of international, adult and pediatric, nephrologists and pharmacists to develop standardized phenotypes for drug-induced kidney disease as part of the phenotype standardization project initiated by the International Serious Adverse Events Consortium. We propose four phenotypes of drug-induced kidney disease based on clinical presentation: acute kidney injury, glomerular, tubular, and nephrolithiasis, along with the primary and secondary clinical criteria to support the phenotype definition, and a time course based on the KDIGO/AKIN definitions of acute kidney injury, acute kidney disease, and chronic kidney disease. Establishing causality in drug-induced kidney disease is challenging and requires knowledge of the biological plausibility for the specific drug, mechanism of injury, time course, and assessment of competing risk factors. These phenotypes provide a consistent framework for clinicians, investigators, industry, and regulatory agencies to evaluate drug nephrotoxicity across various settings. We believe that this is the first step to recognizing drug-induced kidney disease and developing strategies to prevent and manage this condition

    Optimal Polynomial Prediction Measures and Extremal Polynomial Growth

    Full text link
    We show that the problem of finding the measure supported on a compact subset K of the complex plane such that the variance of the least squares predictor by polynomials of degree at most n at a point exterior to K is a minimum, is equivalent to the problem of finding the polynomial of degree at most n, bounded by 1 on K with extremal growth at this external point. We use this to find the polynomials of extremal growth for the interval [-1,1] at a purely imaginary point. The related problem on the extremal growth of real polynomials was studied by Erd\H{o}s in 1947

    The (Evolving) vineyard\u2019s age structure in the valencian community, Spain. A new demographic approach for rural development and landscape analysis

    Get PDF
    Vineyards have assumed a key role as rural landmarks in recent decades. Investigating vineyard dynamics and contexts may reveal various economic, cultural, and environmental aspects of rural landscapes, which can be linked to land-use changes and major soil degradation processes, including soil erosion. As a contribution to rural landscape studies, the purpose of this work is to investigate the spatial distribution of vineyard plots in the Valencian community, located in the eastern area of the Iberian Peninsula, focusing on the final product, the type of vineyard and how long each vineyard has been settled over time. The work provides a comprehensive analysis of a wine-growing landscape, considering strategic (spatial) assets in present and past times. Vineyards were interpreted as a distinctive landmarks that give value to local economies, basic knowledge of how long different types of wine plots have been present in the Valencian community is useful when estimating their degree of sustainability and formulating suggestions, policies, and strategies to prevent processes of landscape degradation at various spatial scales

    Improving Performance of QUIC in WiFi

    Get PDF
    QUIC is a new transport protocol under standardization since 2016. Initially developed by Google as an experiment, the protocol is already deployed in large-scale, thanks to its support in Chromium and Google's servers. In this paper we experimentally analyze the performance of QUIC in WiFi networks. We perform experiments using both a controlled WiFi testbed and a production WiFi mesh network. In particular, we study how QUIC interplays with MAC layer features such as IEEE 802.11 frame aggregation. We show that the current implementation of QUIC in Chromium achieves sub-optimal throughput in wireless networks. Indeed, burstiness in modern WiFi standards may improve network performance, and we show that a Bursty QUIC (BQUIC), i.e., a customized version of QUIC that is targeted to increase its burstiness, can achieve better performance in WiFi. BQUIC outperforms the current version of QUIC in WiFi, with throughput gains ranging between 20% to 30%

    Industrial sprawl and residential housing. Exploring the interplay between local development and land-use change in the Valencian Community, Spain

    Get PDF
    Urbanization in Mediterranean Europe has occurred in recent decades with expansion of residential, commercial and industrial settlements into rural landscapes outside the traditional metropolitan boundaries. Industrial expansion in peri-urban contexts was particularly intense in Southern Europe. Based on these premises, this work investigates residential and industrial settlement dynamics in the Valencian Community, Spain, between 2005 and 2015, with the aim to clarify the role of industrial expansion in total urban growth in a paradigmatic Mediterranean region. Since the early 1990s, the Valencian industrial sector developed in correspondence with already established industrial nodes, altering the surrounding rural landscape. Six variables (urban hierarchy, discontinuous settlements, pristine land under urban expansion, isolated industrial settlements, within- and out-of-plan industrial areas) were considered with the aim at exploring land-use change. Empirical results indicate a role of industrial development in pushing urban sprawl in coastal Valencia. A reflection on the distinctive evolution of residential and industrial settlements is essential for designing new planning measures for sustainable land management and containment of urban sprawl in Southern Europe. A comparative analysis of different alternatives of urban development based on quantitative assessment of land-use change provides guidelines for local development and ecological sustainability

    Effect of interactions on vortices in a nonequilibrium polariton condensate

    Get PDF
    We demonstrate the creation of vortices in a macroscopically occupied polariton state formed in a semiconductor microcavity. A weak external laser beam carrying orbital angular momentum (OAM) is used to imprint a vortex on the condensate arising from the polariton optical parametric oscillator (OPO). The vortex core radius is found to decrease with increasing pump power, and is determined by polariton-polariton interactions. As a result of OAM conservation in the parametric scattering process, the excitation consists of a vortex in the signal and a corresponding antivortex in the idler of the OPO. The experimental results are in good agreement with a theoretical model of a vortex in the polariton OPO

    Extended Huckel theory for bandstructure, chemistry, and transport. II. Silicon

    Get PDF
    In this second paper, we develop transferable semi-empirical parameters for the technologically important material, silicon, using Extended Huckel Theory (EHT) to calculate its electronic structure. The EHT-parameters areoptimized to experimental target values of the band dispersion of bulk-silicon. We obtain a very good quantitative match to the bandstructure characteristics such as bandedges and effective masses, which are competitive with the values obtained within an sp3d5s∗sp^3 d^5 s^* orthogonal-tight binding model for silicon. The transferability of the parameters is investigated applying them to different physical and chemical environments by calculating the bandstructure of two reconstructed surfaces with different orientations: Si(100) (2x1) and Si(111) (2x1). The reproduced π\pi- and π∗\pi^*-surface bands agree in part quantitatively with DFT-GW calculations and PES/IPES experiments demonstrating their robustness to environmental changes. We further apply the silicon parameters to describe the 1D band dispersion of a unrelaxed rectangular silicon nanowire (SiNW) and demonstrate the EHT-approach of surface passivation using hydrogen. Our EHT-parameters thus provide a quantitative model of bulk-silicon and silicon-based materials such as contacts and surfaces, which are essential ingredients towards a quantitative quantum transport simulation through silicon-based heterostructures.Comment: 9 pages, 9 figure
    • …
    corecore