25 research outputs found

    Stability and bifurcation in plant-pathogens interactions

    Get PDF
    We consider a plant–pathogen interaction model and perform a bifurcation analysis at the threshold where the pathogen-free equilibrium loses its hyperbolicity. We show that a stimulatory–inhibitory host response to infection load may be responsible for the occurrence of multiple steady states via backward bifurcations. We also find sufficient conditions for the global stability of the pathogen-present equilibrium in case of null or linear inhibitory host response. The results are discussed in the framework of the recent literature on the subject

    Mathematical insights into neuroendocrine transdifferentiation of human prostate cancer cells

    Get PDF
    Prostate cancer represents the second most common cancer diagnosed in men and the fifth most common cause of death from cancer worldwide. In this paper, we consider a nonlinear mathematical model exploring the role of neuroendocrine transdifferentiation in human prostate cancer cell dynamics. Sufficient conditions are given for both the biological relevance of the model’s solutions and for the existence of its equilibria. By means of a suitable Liapunov functional the global asymptotic stability of the tumour-free equilibrium is proven, and through the use of sensitivity and bifurcation analyses we identify the parameters responsible for the occurrence of Hopf and saddle-node bifurcations. Numerical simulations are provided highlighting the behaviour discovered, and the results are discussed together with possible improvements to the model

    Optimizing the bioenergy water footprint by selecting SRC willow canopy phenotypes: regional scenario simulations

    Get PDF
    © The Author(s) 2019. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Background and Aims: Bioenergy is central for the future energy mix to mitigate climate change impacts; however, its intricate link with the water cycle calls for an evaluation of the carbon–water nexus in biomass production. The great challenge is to optimize trade-offs between carbon harvest and water use by choosing cultivars that combine low water use with high productivity. Methods: Regional scenarios were simulated over a range of willow genotype × environment interactions for the major UK soil × climate variations with the process-based model LUCASS. Soil available water capacity (SAWC) ranged from 51 to 251 mm and weather represented the north-west (wet, cool), north-east (dry, cool), south-west (wet, warm) and south-east (dry, warm) of the UK. Scenario simulations were evaluated for small/open narrow-leaf (NL) versus large/closed broad-leaf (BL) willow canopy phenotypes using baseline (1965–89) and warmer recent (1990–2014) weather data. Key Results: The low productivity under baseline climate in the north could be compensated by choosing BL cultivars (e.g. ‘Endurance’). Recent warmer climate increased average productivity by 0.5–2.5 t ha−1, especially in the north. The modern NL cultivar ‘Resolution’ had the smallest and most efficient water use. On marginal soils (SAWC <100 mm), yields remained below an economic threshold of 9 t ha−1 more frequently under baseline than recent climate. In the drought-prone south-east, ‘Endurance’ yielded less than ‘Resolution’, which consumed on average 17 mm year−1 less water. Assuming a planting area of 10 000 ha, in droughty years between 1.3 and 4.5 × 106 m3 of water could be saved, with a small yield penalty, for ‘Resolution’. Conclusions: With an increase in air temperature and occasional water scarcities expected with climate change, high-yielding NL cultivars should be the preferred choice for sustainable use of marginal lands and reduced competition with agricultural food crops.Peer reviewedFinal Published versio

    Modeling acquired resistance to the second-generation androgen receptor antagonist enzalutamide in the TRAMP model of prostate cancer

    Get PDF
    Enzalutamide (MDV3100) is a potent second-generation androgen receptor antagonist approved for the treatment of castration-resistant prostate cancer (CRPC) in chemotherapy-naïve as well as in patients previously exposed to chemotherapy. However, resistance to enzalutamide and enzalutamide withdrawal syndrome have been reported. Thus, reliable and integrated preclinical models are required to elucidate the mechanisms of resistance and to assess therapeutic settings that may delay or prevent the onset of resistance. In this study, the prostate cancer multistage murine model TRAMP and TRAMP-derived cells have been used to extensively characterize in vitro and in vivo the response and resistance to enzalutamide. The therapeutic profile as well as the resistance onset were characterized and a multiscale stochastic mathematical model was proposed to link the in vitro and in vivo evolution of prostate cancer. The model showed that all therapeutic strategies that use enzalutamide result in the onset of resistance. The model also showed that combination therapies can delay the onset of resistance to enzalutamide, and in the best scenario, can eliminate the disease. These results set the basis for the exploitation of this "TRAMP-based platform" to test novel therapeutic approaches and build further mathematical models of combination therapies to treat prostate cancer and CRPC.Significance: Merging mathematical modeling with experimental data, this study presents the "TRAMP-based platform" as a novel experimental tool to study the in vitro and in vivo evolution of prostate cancer resistance to enzalutamide

    Long pentraxin-3 follows and modulates bladder cancer progression

    Get PDF
    Bladder tumors are a diffuse type of cancer. Long pentraxin-3 (PTX3) is a component of the innate immunity with pleiotropic functions in the regulation of immune response, tissue remodeling, and cancer progression. PTX3 may act as an oncosuppressor in different contexts, functioning as an antagonist of the fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) system, rewiring the immune microenvironment, or acting through mechanisms not yet fully clarified. In this study we used biopsies and data mining to assess that PTX3 is differentially expressed during the different stages of bladder cancer (BC) progression. BC cell lines, representative of different tumor grades, and transgenic/carcinogen-induced models were used to demonstrate in vitro and in vivo that PTX3 production by tumor cells decreases along the progression from low-grade to high-grade advanced muscle invasive forms (MIBC). In vitro and in vivo data revealed for the first time that PTX3 modulation and the consequent impairment of FGF/FGR systems in BC cells have a significant impact on different biological features of BC growth, including cell proliferation, motility, metabolism, stemness, and drug resistance. PTX3 exerts an oncosuppressive effect on BC progression and may represent a potential functional biomarker in BC evolution. Moreover, FGF/FGFR blockade has an impact on drug resistance and stemness features in BC
    corecore