2,224,686 research outputs found

    The Logic of Time: from Aristotle to Computer Science

    Get PDF
    Charla tipo conferencia-seminario dada para alumnos de un másterThis short course will explore that continuous thread which connects the discussion about time in philosophy with the modern use of temporal logic in computer science. It will go through the history of temporal logic to show how ideas developed by ancient and medieval philosophy have been rediscovered in modern times and applied to solve relevant problems in computer science. Part 1: An historical perspective on temporal logic • Synthesis: the nature of time is a central issue of classical and medieval phylosophy • Downfall: in the Renaissance the subject loses interest and is removed from the philo- sophical discussion • Rediscovery: in the 19th and 20th centory temporal logic become a central issue again Part 2: Time in Computer Science • Algorithms, states and computations • Imperative programs and Reactive programs • Temporal Logic for Computer Science: CTL and LTL • The satisfiability problem • The model checking problemUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Central Monitor Based on Personal Computer Using One Wireless Receiver

    Full text link
    Central monitor is a tool in the health field that serves to monitor the patient's condition which is centralized in one monitor display centrally. In this scientific paper raised wireless systems for sending data to one monitor. In this module there are Electrocardiograph (EKG) parameters which are a parameter to detect and measure the electrical activity of the heart muscle using measurements of biopotential signals obtained from the surface of the body. From these measurements, an ECG signal will be obtained to produce a heart rate per minute (BPM). ECG signals are obtained from measurements of the electrical activity of the heart through electrodes placed on the patient's skin using the bipolar lead method. ECG signals will be processed using a  microcontroller circuit as processors. Then the data will be sent to the PC using wireless HC-11. The data received by the PC, then processed using the Delphi application which will then display ECG charts and BPM results and abnormalities indicators if the BPM is in a condition above or below normal. By comparing the module with a standard measuring instrument, the biggest error is 0.99% which is still in tolerance because the tolerance limit is 5

    Concept for high speed computer printer

    Get PDF
    Printer uses Kerr cell as light shutter for controlling the print on photosensitive paper. Applied to output data transfer, the information transfer rate of graphic computer printers could be increased to speeds approaching the data transfer rate of computer central processors /5000 to 10,000 lines per minute/

    Grosch's law: a statistical illusion?.

    Get PDF
    In this paper a central law on economies of scale in computer hardware pricing, Grosch's law is discussed. The history and various validation efforts are examined in detail. It is shown how the last set of validations during the eighties may be interpreted as a statistical misinterpretation, although this effect may have been present in all validation attempts, including the earliest ones. Simulation experiments reveal that constant returns to scale in combination with decreasing computer prices may give the illusion of Grosch's law when performing regression models against computer prices over many years. The paper also shows how the appropriate definition of computer capacity, and in particular Kleinrock's power definition, plays a central role in economies of scale for computer prices.Law;

    Multipac, a multiple pool processor and computer for a spacecraft central data system

    Get PDF
    Spacecraft central data system computer used on deep space probe

    MULTIPAC, a multiple pool processor and computer for a spacecraft central data system, phase 2 Final report

    Get PDF
    MULTIPAC, multiple pool processor and computer for deep space probe central data syste

    Quantum Hamiltonian Complexity

    Full text link
    Constraint satisfaction problems are a central pillar of modern computational complexity theory. This survey provides an introduction to the rapidly growing field of Quantum Hamiltonian Complexity, which includes the study of quantum constraint satisfaction problems. Over the past decade and a half, this field has witnessed fundamental breakthroughs, ranging from the establishment of a "Quantum Cook-Levin Theorem" to deep insights into the structure of 1D low-temperature quantum systems via so-called area laws. Our aim here is to provide a computer science-oriented introduction to the subject in order to help bridge the language barrier between computer scientists and physicists in the field. As such, we include the following in this survey: (1) The motivations and history of the field, (2) a glossary of condensed matter physics terms explained in computer-science friendly language, (3) overviews of central ideas from condensed matter physics, such as indistinguishable particles, mean field theory, tensor networks, and area laws, and (4) brief expositions of selected computer science-based results in the area. For example, as part of the latter, we provide a novel information theoretic presentation of Bravyi's polynomial time algorithm for Quantum 2-SAT.Comment: v4: published version, 127 pages, introduction expanded to include brief introduction to quantum information, brief list of some recent developments added, minor changes throughou

    Quantum algorithms for hidden nonlinear structures

    Full text link
    Attempts to find new quantum algorithms that outperform classical computation have focused primarily on the nonabelian hidden subgroup problem, which generalizes the central problem solved by Shor's factoring algorithm. We suggest an alternative generalization, namely to problems of finding hidden nonlinear structures over finite fields. We give examples of two such problems that can be solved efficiently by a quantum computer, but not by a classical computer. We also give some positive results on the quantum query complexity of finding hidden nonlinear structures.Comment: 13 page
    corecore