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Abstract

In this paper a central law on economies of scale in computer hardware pricing, Grosch’s law,
is discussed. The history and various validation efforts are examined in detail. It is shown
how the last set of validations during the eighties may be interpreted as a statistical
misinterpretation, although this effect may have been present in all validation attempts,-
including the earliest ones. Simulation experiments reveal that constant returns to scale in
combination with decreasing computer prices may give the illusion of Grosch’'s law when
performing regression models against computer prices over many years. The paper also
shows how the appropriate definition of computer capacity, and in particular Kleinrock’s power
definition, plays a central role in economies of scale for computer prices.
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0. Introduction: a motivating discounted cash flow exercise

- Ever since computers exist, the question on economies of scale in computer price is
present. A central result that is still persistent in computer literature today [GILDER
1994] is Grosch’s law, formulated as early as in the fifties. The law can be formulated
as follows :

c= aWO.S
where
c represents the hardware costs of a computer system
w is a measure of the capacity of the computer system
a is a proportionality constant
This law on the cost of computing survived for several decades. It favorizes heavily
the acquisition of large machines, since the cost per unit of capacity goes down as the
capacity increases. Nevertheless a very straightforward discounted cash flow exercise
reveals that this law is somewhat dubious.
Example
Compare the following computer system acquisition scenarios, for a system
that requires a computer capacity of 2w at the end of two time periods of
length T during which the interest rate is r, assuming that the demand increases
linearly and computer prices remain constant over the two time periods :
Scenario A
Buy a system of capacity 2w at time 0

Scenario B

Buy a system of capacity w at time 0 and buy another system of capacity w at
time 7'
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Following the principles of capacity planning, which consider excess capacity
as a waste, one might expect scenario B to be cheaper than scenario A. If
Grosch’s law would be true, surprisingly this turns out not to be correct. In
fact, the cost for the scenarios is the following :

C, =a@2w)*’
Cy = aw® +(aw®)[(1+7r)

Comparing the two costs reveals that C, <C, if r>2% =141%, which is only

the case for long time periods T or high inflations (over 100 % during one time
period).

Hence the consequences of Grosch’s law are less trivial than might be expected at
first. However, at regular points in time, validations of this law have been published.
During the eighties there was even a very interesting and animated series of papers
discussing Grosch’s law type of effects in computer prices [EIN-DOR 1985a, EIN-
DOR 1985b, JONES 1985, KANG, MILLER & PICK 1986, KLEINROCK 1987,
MENDELSON 1987], there has never been a real explanation for the fact that this law
could persist for many decades. This paper is an attempt in this direction. It will be
shown how a regression model on computer prices over many years, with constant
returns to scale within each year and decreasing computer prices on a yearly basis,
may lead to the illusion of a Grosch’s law effect.

The paper is organized in the following way. First an overview of the amazingly long
history of Grosch’s law is given. The main result of the paper is developed in the next
section, featuring a simulation experiment against the validations of the eighties on
Grosch’s law. Next, the various concepts of computer capacity and speed are



discussed, in order to position Grosch’s law type of effects appropriately. The paper
concludes with a discussion of the results, arguing whether Grosch’s law ever existed.

1. Grosch’s Law: a story of validation and criticism

Grosch’s law was published more or less as an economic hypothesis, without
fundamental theoretical foundations [GROSCH 1953]. At the time of its formulation
it was in no way based on empirical data. Validation of Grosch’s law is not so
difficult, provided that a uniform allocation of data for the cost and the capacity is
used. Indeed, it suffices to take the logarithmic version of the law and perform a
regression analysis as follows :

log(c) =log(a) + blog(w)
The factor b, which is to be estimated with a sufficient degree of determinism
(measured by the R-square of the simple linear regression model) should be as close

as possible to 0.5, which is Grosch’s coefficient.

The first validation exercises have been published in the sixties [KNIGHT 1966,
1968]. Knight published the following Grosch’s coefficients :

Period Scientific Commercial
Computing | Computing
1950 - 1962 0.519 0.459
1962 - 1966 0.322 0.404

At first sight, these studies seem to confirm Grosch’s law. However, a crucial
observation that formed the start of the research of this paper is the fact that Grosch’s
law was validated better when data over a longer period are studied : the coefficients
resulting from regression over the 1950 to 1962 data are closer to 0.5 than the
coefficients for the 1962 to 1966 data. This validation experiment also already
showed that the computer market is not homogeneous.

Grosch published a validation of his law in the mid seventies [GROSCH 1975]. At
the end of the seventies Cale experimented with alternative attempts to correlate the
cost of a computer system to some of its components. The study analyses data over
the period 1972 to 1977 and demonstrates a Grosch like coefficient for the correlation
between the cost of a computer system and the memory size. Of course, the
importance of using the memory size instead of the computer capacity in terms of a
processor speed measure can be questioned. Cale’s study also showed that analysis on
subsets of the data (e.g. General Purpose Systems versus Small Business Systems)
gives significantly different results.

A milestone in the history of Grosch’s law was the publication of the study by Ein-
Dor [EIN-DOR 1985a]. His study, which was based on a set of data published in a
Computerworld Hardware Round-up [HENKEL 1981], showed that Grosch’s law
was no longer valid on this set of data. On the contrary Ein-Dor discovered overall



increasing returns to scale on computer costs. However, analogous to the study of
Cale, an analysis on five subsets revealed five subsets of computer types for which
Grosch’s law was valid. Subsequently, an amended version of Grosch law was born,
stating that within the smallest computer category that was needed, the largest
computer was still favorable. Needless to say that this publication was the start of a
very animated series of follow-on papers debating the subject [JONES 1985, EIN-
DOR 1985b, KANG, MILLER & PICK 1986, MENDELSON 1987].

A very interesting reaction was the paper by Mendelson [MENDELSON 1987] as it
attacks precisely the use of subgroups in the validation of Grosch’s law type of effects.
Mendelson was using data including 1985 computer prices and found constant returns
to scale. Moreover, he showed that the grouping of data into subsets could produce
basically any law (on the subgroup data). In other words, any law could be validated
provided the appropriate subset grouping is chosen on the data that are used for the
validation.

In the paper of Mendelson another striking effect arises : he and Ein-Dor claim to use
the same set of data for some validations. Ein-Dor finds increasing returns to scale
(1.30 as Grosch’s coefficient) while Mendelson reported constant returns to scale
(1.03 as Grosch’s coefficient). Careful inspection reveals that Ein-Dor had included
11 observations on micro-computers in his data, which were not included in
Mendelson’s experiments. It is remarkable that about 10% of data can give such a
deviation in the regression model.

At the beginning of the nineties some research work was initiated to validate Grosch’s
law type of effects on the whole set of data available for the eighties, including
[HENKEL 1988a & 1988b]. The following is a plot of the test data, showing the
average cost per capacity (c/w) versus the capacity (w).



c/W
(/7
MIPS)
600 + *
*
*
*
500 4 *
*
* K
400 4 * Kk * ok
* *
* k%  kx
* * *
* % *
* *
* *
300 4 * * * Kk
* Kk *
* * *
* Kk *k K *
* K * ok kK
*
* * *
200 4 * Kk * % *
*k Kk ok
* % * * *
* * % x * * kK * * * *
* * * * * *
* * Kk * * * *
* ok ok ok ok Kk * ok * * * * *
100 + =+
* * * *
* *
*
o 4+
| | | | | | -1 | | |
| 1 | 1 T T | | | |
0 10 20 30 40 50 60 70 80 90

CAPACITY W (MIPS)

These observations are shown here because they already visually may give the
impression of a Grosch’s law type of effect. However, the validation procedure
described above leads to the following conclusions on these data:

a) On the overall data there are constant returns to scale (Grosch’s coefficient of
0.924), however with a very weak degree of determination (R-square of 0.036).

b) The same effect arises when looking at subsets of data, as published in
Computerworld in 1981 (Grosch’s coefficient of 0.913), 1985 (Grosch’s coefficient of
0.978) and 1987 (Grosch’s coefficient of 0.995) with slightly higher degrees of
determination.



c) A remarkable effect can be discovered when looking at the maximum prices per
unit of computer capacity. A linear regression over the maximum price per unit of
capacity over all the data shows a regression coefficient of 0.55, remarkably close to
Grosch’s coefficient. Moreover these results appear with a strong degree of
determination (R-square of 0.693). Of course, this result cannot be interpreted as an
effect of economies of scale, since only maximal prices are considered. The only
consideration that can be attached to this observation is the fact that for larger
capacities the risk of paying more than the average price decreases.

The conclusion on this last validation is double. On one hand there is an ongoing
support for constant returns to scale in computer prices, especially when looking at
data over a shorter time period. On the other hand there is still the question how the
impression of economies of scale could persist for so long. The simulation of the next
section will provide some insight.

2. A simulation experiment on Grosch’s Law

Stimulated by the above validation exercise, the following scenario will be simulated
in this section:

Assume that computer prices are constant per unit of capacity during a one
year period. Assume at the same time that over several years, computer prices
are going down at some rate. During the same period, each year the
maximum capacity of computers also increases. Then, what is the result of
Grosch’s law’s validation procedure against these simulated observations ?

The simulation experiment was designed such that its data set would conform to the
validation set used in the previous section. The detailed SAS-code of the simulation
can be found in the appendix, but the parameters used are the following:

a) During one year computer capacities are picked randomly from a Gamma
distribution up to a specified maximum. The Gamma distribution is used to create a
skew distribution that simulates the effect of having more computers with lower
capacity in the market. Computer prices are related to the selected capacities by

means of a Uniform distribution around a constant price per unit of capacity
(“MIPS”).

b) During the first year the maximum capacity is limited to 15 MIPS, in accordance
with the data from the previous section. Next, for a period of 9 years the average
price per unit of capacity goes down by 35%, while the maximum capacity available
increases with 25%. (These numbers were also derived from the Computerworld
dataset).

The result is the following dataset, which resembles the data from the previous
section, as can be seen from visualising the data.
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The validation procedure of Grosch’s law on this set of data results in a Grosch’s
coefficient of 0.50 (sic !) with a relatively high degree of determination (R-square
equal to 0.51).

It is also instructive to look at the behavior of the maximum price per unit of capacity
for comparison with the results of the previous section. For this simulation, the result
gives a coefficient of 0.355, with an R-square of 0.73. This result is again close to
what was discovered before.



Various alternative simulation experiments give analogue results. Increasing the
number of years doesn’t change the results, decreasing the number of. years makes
them less determined. Variations in the Gamma distribution as the years proceed also
result in an overall Grosch’s coefficient around 0.50.

The result may be interesting, since it shows that in a market with only constant
returns to scale, the evolution of prices in time may lead to the impression of
economies of scale. These results are complementary to the material of Ein-Dor, who
initiated the re-validation of Grosch’s law and Mendelson, who discovered the
statistical danger of using subgroups.

3. Computer capacity versus speed

The appropriate definition of computer capacity may also play a role in the search for
Grosch’s law type of effects in computer prices. At the time Grosch’s law was
formulated, computer capacity was simply expressed in terms of the speed of the
processor, represented in terms of the number of instructions per second that the
processor was able to execute. Typically, the studies of Knight [KNIGHT 1966] still
refer to hundreds of instructions per second, which were replaced by the famous MIPS
(millions of instructions per second) from the sixties on.

Actually, vendors and, subsequently the trade press, used the term “MIPS” but in fact
used a form of relative performance to express the capacity of the computer system.
This relative performance can be obtained from measurements on a benchmark by
comparing the relative internal throughput ratio’s. In fact , the basic laws of
operational computer performance analysis [DENNING & BUZEN, 1978] confirm
this very easily, as follows :

Let A and B be two different computer systems. Running the same benchmark
on both machines results in throughput values X4 and X3 and system
utilizations Uy, and Up respectively. According to the utilization law

U=SX ,or S=U/X

so that (X;/U,)/(X,/U ,)=54/S; . Observe that U/X gives the systems

utilization per transaction, which results in :

S,/Sz = speed radio between systems A and B =
(% utilization per transaction on A)/(% utilization per transaction on B)

The last expression is sometimes referred to as the “internal throughput ratio”, since
the throughput is related to the busy time only, and not to the wallclock time, as in the
external throughput X. Observe that, since the definition makes use of the workload-
dependent performance parameter X, the above definition leads to a different speed by
workload-type. At most, a “MIPS” rating is then based on average speed ratio’s.



Speed is not equal to capacity, as was emphasised by Kleinrock [KLEINROCK 1986]
and Denning [DENNING 1985]. They defined capacity (or “power”) of a system as
the ratio of the external throughput and the response time:

Capacity = X/R

This definition acknowledges the fact that, within a single computer system, capacity
can be used to produce throughput or response time, or a trade-off between both. This
trade-off is of course economically determined, as the capacity allocation problem
becomes a micro-economic problem of the optimization of a production function with
one cost parameter (the capacity) versus two product parameters (throughput versus
response time). In fact, without recognition of these economic aspects, the definition
of capacity could easily lead to another Grosch’s law illusion. A system with double
speed can produce twice as much transactions with half the response time if that load
is indeed available.

Single Speed Double Speed

X=1,R=1 X=2,R=0.5
capacity~1 capacity~4

This could give a Grosch type of effect in the case where the external throughput X
and the response time R have equal economic importance. In most applications
however, only one of these parameters has a dominant value. Typically,
administrative systems and operational systems have throughput as a determinator for
economic value. The value of the system is, for example, directly related to the
number of transactions per month that are processed. Decision support type of
systems typically have response time as a dominant value indicator, since the speed of
the decision is accelerated by the system (amongst other factors, such as the
correctness of the decision). Many scientific jobs also belong to this group of
applications, since a researcher typically wants to draw conclusions from the
calculations or models that have been calculated by the job. Consequently, a more
correct formulation (in analogy with the standard Cobb-Douglas production function)
of the capacity of a system is the following :

Capacity=X“/R" , where a/b gives the relative value of X over R (a,b = 0)

In fact, a/b gives the relative value of X over R, so that in the extreme cases (a or b =
0) the capacity is just proportional to X or 1/R. This value determines to what extent
the capacity will increase upon processor upgrade. The following examples illustrate
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that the use of this definition of capacity makes any conclusion about the existence of
Grosch’s Law impossible.

Single Speed Double Speed

X=1,R=1
a=2, b=1 capacity~1 capacity~8
a=1, b=2 capacity~1 capacity~2.8284
a=0.5, b=0.005 capacity~1 capacity~1,4191
a=0.005, b=0.5 capacity~1 capacity~1,4191

It is interesting to revisit the arguments of Denning regarding the impact of
multiprocessing and parallel computing on the relative capacity of computer systems.
The following picture shows the performance data analogous to the above case, but
this time for doubling the computer system by using two processors, in the first case
just for multiprocessing, and in the second case for parallel processing :

Single Speed Single Speed
Double Processor Parallel Processor

X=2,R=1

In the multiprocessing case the relative capacity of the multiprocessor with respect to
the mono-processor is 2 (obviously neglecting effects of inter-processor overhead).
The relative capacity of the double speed processor is 2¢2°. This means that the
capacity of a multi-processor can approach (economically) the capacity of a faster
processor in case that the economic value of the throughput is largely dominant over
that of the response time (b=0). It also means that for this type of applications a fair
amount of “scaling” can be obtained with multiprocessing.

The case of a fully parallellisable job load on a multi-processor gives again a relative

capacity of 2%2°, so that parallel processing can deliver the economic capacity of a
faster processor. It should be stressed however that this only holds for a fully
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parallellisable workload, which is hard to achieve. In general, Amdahl’s law on point
accelerators applies [DEDENE & BURGER 1990] and shows that the general result
of a partial speed-up is largely influenced by the portion that is accelerated. This
makes parallel processing only an option in those cases where no faster speed can be
obtained.

RAID disk processing is a typical application of parallel processing to the case of disk
operations. Again, the effect of RAID disk processing on the average disk processing
time will be proportional only to the amount of disk processing that it can speed up.
For the same reason, many disk vendors combine RAID technology with disk caching.
The use of multiprocessing for the disk I/Os gives at least the throughput increase
effect, while the disk caching provides additional response time improvements. The
combined result can give a substantial larger disk capacity (with the same “speed” of
the individual disks).

The above arguments demonstrate that the notions of speed versus capacity should not
be interchanged and can largely influence the discussion of possible Grosch effects.

4. Grosch’s Law versus Moore’s Law : exponential growth forever ?

The analysis of the previous sections brings in a relationship with another law in
information technology : Moore’s Law. This law, originally put forward by the Intel
co-founder Moore in 1965, simply states that the logic density of silicon integrated
circuits in a chip doubles about every 18 months. This law is strongly confirmed by
the evolution of Intel chips in the last decade. Correlating density to cost, the
arguments in the previous section would imply :

Moore’s Law = Grosch’s Law

Notice here that the actual cost degradation rate as stated in Moore’s law is higher
than the one in the simulation model of the previous section.

Obviously, the converse relationship is not necessarily true. First of all, the laws of
physics reveal that Moore’s Law cannot evolve continuously for eternity. In fact, it
can be assumed that the creation of higher density gradually increases the cost of
producing the actual chip. This of course slows down the degradation rates and makes
it take more than 18 months to double the density at feasible prices. As such, there
will be a point where the density increase drives this cost up to such a level that any
cost advantage disappears. Some people argue that this effect may soon take place
(period 2003-2005). From that point on, it makes no longer sense to make smaller
chips. Of course, this puts an end to the validity of Moore’s law at the same time.
However, due to market expansion, prices can still go down for the same capacity and
in this way still give rise to a Grosch like effect. So Grosch effects can still persist
even when Moore’s law stops.

Strange enough, as memory chips (also subject to Moore’s Law) evolve in density,
that density gets absorbed immediately. In fact, Parkinson’s law of data (buying more
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memory encourages the use of more memory-intensive techniques) states that over the
last ten years the memory usage of evolving systems tends to double about once every
18 months, which is precisely in line with Moore’s law. However, memory chips are
a nice example of the fact that the price doesn’t follow the evolution of the densities :
prices for memory chips have gone up with 10% on average on a yearly basis.

Last but not least, Moore’s law type of effects are observed in networking [STEHLO
1995], in particular with the advent of ATM. As prices follow the increase in
capacity, again a Grosch-like effect may seem to encourage the acquisition of the
highest speed connections.

5. Conclusion

The conclusions from this paper are clear : Grosch’s law was and is a statistical
illusion. Its validation was (wrongly) based on a regression analysis through data
series subject to decreasing computer prices, analogous to Moore’s law. Furthermore,
every technology that is subject to Moore’s law type of effects can give rise to further
illusions of the existence of Grosch’s law, depending on the cost structure of the
technology. Modern definitions of computer capacity, expressed by power and speed
could also give rise to Grosch-like effects if the appropriate micro-economic features
are not taken into consideration.
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Appendix
The following is the SAS program for the simulation experiment.
options pagesize=55 pageno=1 nodate;

titlel 'Simulation’';

data grosch(keep=mips avcost logw logp);

retain seed 98745632; /*seed random numbers*/
years=9; /*number of years */
mmips=15; /*max cap year 1 */
cpm=550; /*cpm during year 1 */
r=2; /*shape parameter */
do year=1 to years;
do i=1 to 20; /*take 20 samples */
call rangam(seed,r,t);
mips=mmips*t*2/7; /*sampled # mips */
call ranuni (seed,s) ;
call ranuni(seed,v);
avcost=cpm- (s*60)+(v*60) ; /*sampled cpm value */
logw=log (mips) ;
logp=log(avcost) ;
if mips <= mmips and avcost > 0 then
do;
output grosch;
end;
end;
mmips=mmips*1.35; /*cap increase 35% */
cpm=cpm*0.75; /*cpm decrease 25% */
end;

run;

proc plot data=grosch;
plot avcost*mips="*" /vaxis=0 to 650 by 100 haxis=0 to 90 by 10;
run;

title3 'regression';

proc reg data=grosch;
model logp=logw;
run;

data groschl;

set grosch;

intw = int(mips+0.5);
run;

proc sort data=groschl;
by intw;
run;

proc means data=groschl noprint;

by intw;

var avcost;

output out=grosch2 n=aantal min=min max=max mean=gem;
run;

data grosch3;
merge groschl grosch2;
by intw;

run;
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proc sort data=grosch3;
by descending intw descending avcost;
run;

data grosch3;
set grosch3;
intwp=lag(intw) ;
run;

data grosch3;
set grosch3;
if intw < intwp;
if intw > 0 ;
logpm = log(max) ;
run;

title3 'regression : max';
proc reg data=grosch3;

model logpm = logw;
run;

16






