624 research outputs found

    Parallel pruning for k-means clustering on shared memory architectures

    Get PDF
    We have developed and evaluated two parallelization schemes for a tree-based k-means clustering method on shared memory machines. One scheme is to partition the pattern space across processors. We have determined that spatial decomposition of patterns outperforms random decomposition even though random decomposition has almost no load imbalance problem. The other scheme is the parallel traverse of the search tree. This approach solves the load imbalance problem and performs slightly better than the spatial decomposition, but the efficiency is reduced due to thread synchronizations. In both cases, parallel treebased k-means clustering is significantly faster than the direct parallel k-means. © Springer-Verlag Berlin Heidelberg 2001

    Hydrogels in the treatment of rheumatoid arthritis: drug delivery systems and artificial matrices for dynamic in vitro models

    Get PDF
    Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory disorder that mostly affects the synovial joints and can promote both cartilage and bone tissue destruction. Several conservative treatments are available to relieve pain and control the inflammation; however, traditional drugs administration are not fully effective and present severe undesired side effects. Hydrogels are a very attractive platform as a drug delivery system to guarantee these handicaps are reduced, and the therapeutic effect from the drugs is maximized. Furthermore, hydrogels can mimic the physiological microenvironment and have the mechanical behavior needed for use as cartilage in vitro model. The testing of these advanced delivery systems is still bound to animal disease models that have shown low predictability. Alternatively, hydrogel-based human dynamic in vitro systems can be used to model diseases, bypassing some of the animal testing problems. RA dynamic disease models are still in an embryonary stage since advances regarding healthy and inflamed cartilage models are currently giving the first steps regarding complexity increase. Herein, recent studies using hydrogels in the treatment of RA, featuring different hydrogel formulations are discussed. Besides, their use as artificial extracellular matrices in dynamic in vitro articular cartilage is also reviewed.Norte2020 project (NORTE-08-5369-FSE000044) and the Portuguese Foundation for Science and Technology (FCT) program (PD/BD/143081/2018). IFC thanks the TERM RES-Hub, Tissue Engineering and Regenerative Medicine Infrastructure project, funded by FCT. The FCT distinction attributed to JMO under the Investigator FCT program (number IF/01285/2015) is also greatly acknowledge

    Scaffolds and Coatings for Bone Regeneration

    Get PDF
    Bone tissue has an astonishing self-healing capacity yet only for non-critical size defects (<6â mm) and clinical intervention is needed for critical-size defects and beyond that along with non-union bone fractures and bone defects larger than critical size represent a major healthcare problem. Autografts are, still, being used as preferred to treat large bone defects. Mostly, due to the presence of living differentiated and progenitor cells, its osteogenic, osteoinductive and osteoconductive properties that allow osteogenesis, vascularization, and provide structural support. Bone tissue engineering strategies have been proposed to overcome the limited supply of grafts. Complete and successful bone regeneration can be influenced by several factors namely: the age of the patient, health, gender and is expected that the ideal scaffold for bone regeneration combines factors such as bioactivity and osteoinductivity. The commercially available products have as their main function the replacement of bone. Moreover, scaffolds still present limitations including poor osteointegration and limited vascularization. The introduction of pores in scaffolds are being used to promote the osteointegration as it allows cell and vessel infiltration. Moreover, combinations with growth factors or coatings have been explored as they can improve the osteoconductive and osteoinductive properties of the scaffold. This review focuses on the bone defects treatments and on the research of scaffolds for bone regeneration. Moreover, it summarizes the latest progress in the development of coatings used in bone tissue engineering. Despite the interesting advances which include the development of hybrid scaffolds, there are still important challenges that need to be addressed in order to fasten translation of scaffolds into the clinical scenario. Finally, we must reflect on the main challenges for bone tissue regeneration. There is a need to achieve a proper mechanical properties to bear the load of movements; have a scaffolds with a structure that fit the bone anatomy.This article is a result of the project FROnTHERA(NORTE-01-0145-FEDER-000023), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the POR-TUGAL 2020 Partnership Agreement, through the European RegionalDevelopment Fund (ERDF) and is supported by Portuguese Founda-tion for Science and Technology in the scope of the projects UID/EEA/04436/2013 and NORTE-01-0145-FEDER-000018-HAMaBICo. JMOthanks the Portuguese Foundation for Science and Technology (FCT)for the funds provided under the program Investigador FCT 2015 (IF/01285/2015)

    3D segmentation of intervertebral discs: from concept to the fabrication of patient-specific scaffolds

    Get PDF
    Aim: To develop a methodology for producing patient-specific scaffolds that mimic the annulus fibrosus (AF) of the human intervertebral disc (IVD) by means of combining magnetic resonance imaging (MRI) and 3D bioprinting. Methods: In order to obtain the AF 3D model from patientâ s volumetric MRI dataset, the RheumaSCORE segmentation software was used. Polycaprolactone scaffolds with three different internal architectures were fabricated by 3D bioprinting, and characterized by micro-computed tomography. Results: The demonstrated methodology of a geometry reconstruction pipeline enabled to successfully obtain an accurate AF model and 3D print patient-specific scaffolds with different internal architectures. Conclusion: The results guide us towards patient-specific IVD tissue engineering as demonstrated a way of manufacturing personalized scaffolds using patient's MRI data.The authors would like to acknowledge the financial support provided by the Portuguese Foundation for Science and Technology (FCT) through the project EPIDisc (UTAPEXPL/BBB-ECT/0050/2014), funded in the Framework of the ‘International Collaboratory for Emerging Technologies, CoLab’, UT justin|Portugal Program. FCT is also acknowledged for the PhD scholarship attributed to IF Cengiz (SFRH/ BD/99555/2014) and the financial support provided to J Silva-Correia (SFRH/BPD/100590/2014 and IF/00115/2015). JM Oliveira also thanks the FCT for the funds provided under the program Investigador FCT (IF/00423/2012 and IF/01285/2015). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript.info:eu-repo/semantics/publishedVersio

    The effect of initial pH and retention time on boron removal by continuous electrocoagulation process

    Get PDF
    In this study, factors influencing boron removal via the continuous electrocoagulation process were investigated at lab-scale. Different influent pH values (4, 5, 6, 7.45 and 9) and contact times (10, 25, 50 and 100 min) were examined as variable parameters. Plate-type aluminium electrodes with 5 mm distance between them were used. All the experiments were conducted in continuous mode and the current density was kept constant at 5 A throughout the whole experimental period. The initial boron concentration was selected to be 1000 mg L-1. The first set of experiments concerning the influence of the influent pH showed that the highest boron removal (67%) was obtained at pH=6 since it was the optimal pH for boron precipitation through aluminium borate formation. Under the constant current density of the study and with the initial pH adjusted to 6, increasing the duration of the electrocoagulation process from 10 to 100 min resulted in raising the boron removal from 45 to 79% during the second set of experiments. The greater duration of the electrocagulation process enabled higher aluminium dissolution, thus allowing the existence of a higher number of coagulants within the reactor. Moreover, it enhanced boron precipitation because of the longer contact time between the boron ions and the coagulants. After optimizing significant parameters such as the influent pH and the electrocagulation duration, the continuous electrocoagulation process was found to constitute an effective alternative for boron removal

    Dynamics of the chiral phase transition from AdS/CFT duality

    Full text link
    We use Lorentzian signature AdS/CFT duality to study a first order phase transition in strongly coupled gauge theories which is akin to the chiral phase transition in QCD. We discuss the relation between the latent heat and the energy (suitably defined) of the component of a D-brane which lies behind the horizon at the critical temperature. A numerical simulation of a dynamical phase transition in an expanding, cooling Quark-Gluon plasma produced in a relativistic collision is carried out.Comment: 30 pages, 5 figure
    corecore