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Abstract

Measuring cognitive load is important for surgical education and patient safety. Traditional

approaches of measuring cognitive load of surgeons utilise behavioural metrics to measure

performance and surveys and questionnaires to collect reports of subjective experience.

These have disadvantages such as sporadic data, occasionally intrusive methodologies,

subjective or misleading self-reporting. In addition, traditional approaches use subjective

metrics that cannot distinguish between skill levels. Functional neuroimaging data was col-

lected using a high density, wireless NIRS device from sixteen surgeons (11 attending sur-

geons and 5 surgery resident) and 17 students while they performed two laparoscopic tasks

(Peg transfer and String pass). Participant’s subjective mental load was assessed using the

NASA-TLX survey. Machine learning approaches were used for predicting the subjective

experience and skill levels. The Prefrontal cortex (PFC) activations were greater in students

who reported higher-than-median task load, as measured by the NASA-TLX survey. How-

ever in the case of attending surgeons the opposite tendency was observed, namely higher

activations in the lower v higher task loaded subjects. We found that response was greater

in the left PFC of students particularly near the dorso- and ventrolateral areas. We quantified

the ability of PFC activation to predict the differences in skill and task load using machine

learning while focussing on the effects of NIRS channel separation distance on the results.

Our results showed that the classification of skill level and subjective task load could be pre-

dicted based on PFC activation with an accuracy of nearly 90%. Our finding shows that

there is sufficient information available in the optical signals to make accurate predictions

about the surgeons’ subjective experiences and skill levels. The high accuracy of results is

encouraging and suggest the integration of the strategy developed in this study as a promis-

ing approach to design automated, more accurate and objective evaluation methods.
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Introduction

Excessive workload or acute stress may impact surgeons’ ability to process all the information

available during surgery in the operation room (OR) and may result in low situational and

safety awareness, impaired decision-making and performance. Under excessive workload, a

surgeon may be more easily distracted, entertain fewer alternatives, or persist with ineffective

strategies [1–3]. The extent to which mental workload degrades performance depends upon

surgeons’ experience. Expertise is characterized by a combination of high performance and

low cognitive load, allowing expert surgeons to process larger amounts of information and

respond appropriately to unexpected events [4]. The mastery of complex tasks correlates with

a progressive decrease in mental workload [5, 6] and minimally invasive operations are more

workload intensive than open operations [7].

Several methods have been used to measure workload in surgery, including, subjective rat-

ing scales and physiological measurements (EEG, EKG etc) [8]. One of the most widely used is

the subjective ratings scales known as NASA-TLX [9–11]. It is a multidimensional scale, ini-

tially developed for the use in the aviation industry. The NASA-TLX provides an overall index

of mental workload as well as the relative contributions of six subscales: mental, physical, and

temporal task demands; and effort, frustration, and perceived performance. The NASA-TLX

score on an interval scale ranging low (1) to high (20) for each subscale. The widespread use of

NASA-TLX is associated with its simplicity of application and interpretation. However, the

NASA TLX has been criticized for not measuring the mental workload in a real time [12, 13]

NASA-TLX is filled out after task completion to gather participants’ recall of their cognitive

effort during surgery. Therefore, NASA TLX can be intrusive to primary task performance

Thus, there is a need for more automated, more accurate and objective evaluation methods.

Psychophysiological measures allow a more objective workload assessment and can provide

uninterrupted evaluation. They are gaining in popularity as progress in wearable sensor tech-

nology makes this approach less intrusive and capable of delivering continuous, multi-modal

information. Electroencephalogram (EEG) and Heart Rate (HR), Heart Rate Variability(HRV)

have also been correlated with NASA-TLX scores [14, 15] as well as expertise, task complexity

and poor performance in surgery. Similarly, optical imaging (NIRS) has been used to assess

the cognitive load of surgeons. It has been implemented to capture activation patterns in spe-

cific brain areas during surgical tasks with resulting correlations to surgical expertise and tech-

nical performance [16–18].

NIRS is a developing technology for assessing the hemodynamic activity of the human cor-

tex. NIRS can be a portable and wireless. As a wearable and lightweight method, NIRS pro-

vides a safe and practical approach for monitoring surgeons’ brain activity, and may be

adopted even for applications in OR. Technical progress has also made it possible to use NIRS

with a high density and multi-distance source detector separations [19]. NIRS is a method

which is very sensitive to the superficial layers of the head, i.e. the skin and the skull, where sys-

temic interference occurs. Thus, the NIRS signal is contaminated with systemic interference of

superficial origin. Our approach to overcome this problem has been the use of additional short

source-detector separation optodes as regressors. In this study, high density NIRS device allow

us to investigate the hemodynamic changes in a different depth using different source-detector

separations. We are able to use 52 channels with a separation distance of 1.5 cm, 36 with 2.12

cm, 68 with 3 cm, and 48 with 3.35 cm.

In this paper, we investigate cerebral hemodynamic correlates of NASA-TLX by segregating

the ratings into sets of high and low scores. We also investigate the ability of prefrontal activa-

tions to discriminate between the subjects’ subjective experiences (high v low NASA-TLX

score) as well as their skill levels (Student v Attending), by using machine learning techniques.
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Our aim is to show that there is sufficient information available in the optical signals to make

accurate predictions about the surgeons’ subjective experiences and skill levels. We focussed

on how both the topographic location and the sampling depth of a channel (which depends on

source detector separation) affected the information available regarding the cognitive load and

the expertise of the subjects. We also examined the effects of superficial signal regression by

using the signal from the shortest (1.5 cm) separated channels to minimize the non-cerebral

component from that of the normal (3 cm) and long (3.35 cm) separated channels [20, 21].

Our automated approach can be used instead of currently established metrics used for certifi-

cation in surgery. These results demonstrate that the combination of advanced fNIRS imaging

with machine learning approaches offers a practical and quantitative method to predict subjec-

tive experience and skill levels. The reported optical neuroimaging methodology is well suited

to provide quantitative and standardized metrics for professional certifications and surgery

education.

Methods

Subjects

Sixteen surgeons (11 Attending surgeons and 5 surgery resident) and 17 medical students par-

ticipated in this study. Surgery residents (5 surgery residents) are excluded from further analy-

sis due to low sample number. Subject demographics are listed in S1 Table. To avoid any

issues regarding hemisphere-specific activation, only right-handed participants were selected.

All participants provided written informed consent prior to the study commencing. Partici-

pants had normal or corrected to-normal vision. The Ethical Committee of the College of

Medicine at Medipol University (10840098–604.01.01-E.33230) approved the study.

Experimental design

The study was conducted in a laboratory equipped with a Laparoscopic trainer box. Each trial

took about 40 minutes including total time spent by participants to perform the tasks and set-

ting up the system and devices. At the beginning of the trial, two 2-minutes-long videos that

demonstrates the tasks were shown on a computer screen to the subjects. The rules and the

possible errors were explained and demonstrated. The subjects were informed that they were

free to stop and leave the experiment at any time they wished without risk of facing any cir-

cumstances. The surgical equipment and their usage were introduced to 20 of 33 subjects who

had no laparoscopic surgery training or experience and were given 10-minutes free time to

train on tasks and understand how the devices and equipment work. 13 of 33 subjects who had

previous experience or training of laparoscopic surgery skipped this step.

The tasks of the experiment included two Fundamentals of Laparoscopic Surgery tasks, Peg

Transfer and Threading as “Task 1” and “Task 2” respectively. Every task was preceded by

1-minute-long resting state fNIRS recording and followed by fulfilling of NASA-TLX ques-

tionnaire by the subjects to evaluate his/her own performance and taskload in that task. In

addition to this, following the training session, NASA-TLX Pre-Test was fulfilled by subjects

with no previous laparoscopic surgery experience or training.

Peg transfer task involved grasping, lifting and relocating rings from one rod to another

using both laparoscopy graspers and was performed on a ring stack base. Four rods were

selected and labelled 1, 2, 3 and 4, at the left-hand bottom, top left-hand, top right-hand and

bottom right-hand corners on the ring stack base respectively. Four rings were initially put

over rod 1 at the beginning of the trial. Participants were instructed to move each ring individ-

ually from rod 1 to 4. The procedure included picking up rings from rod 1 and place it to rod 2

one by one with left-hand only. Once all rings were moved to rod 2, they were moved
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individually by grasping and lifting the ring up with the left-hand, passing the ring over to the

right-hand, then placed onto rod 3 using the right-hand only. The procedure completed by

moving the rings individually from rod 3 to 4 using right-hand only. One of the two defined

error types in this task were dropping a ring during transfer steps except dropping it on the

beginning or aimed rod. The other one is re-grasping a ring with right-hand grasper after

dropping it while passing it over from left-hand to right-hand.

Threading involved grasping a piece of string and passing it through the holes using both

graspers and was performed on a Threading Base. The start of a piece of string was initially

placed on the left-hand side of the base and the participants had to start passing it through the

holes which were labelled 1–7 in a zigzag pattern using both hands as they were willing to.

Passing the string beside or behind a hole instead of through the hole and trying to continue

on passing the string through the following holes due to the visual distortion (often caused by

the 2-dimensional viewing on the screen) was a defined error type in this task.

Our experimental procedure is summarized in Fig 1. Following the introduction and train-

ing session, the subjects were given time to relax and prepare for the tasks. After this step, the

NIRS device was placed on the subjects’ heads. In order to have the best result, the inferior bor-

der of the device was placed over upper border of nasion and eyebrows, the hair that might be

an obstacle for optodes to work efficiently were tried to be gently retracted and kept away and

the string of the device was adjusted and fitted according to the verbal feedback from the sub-

jects. This was followed by the calibration of the optodes for recording.

After the optimal calibration was determined, any sound, extra light source and any other

attention distracting stimuli were removed from the experiment environment. At this point,

the subjects who had a 10-minute-long training session were asked to fill NASA-TLX Pre-Test.

Then, all the subjects were reminded not to talk during the NIRS recordings. Later, the subjects

were asked to stand still with closed eyes for resting state recording until they were asked to

start the task. NIRS recording started at this point. 60 seconds later, the resting state recording

was stopped, the task recording was started and the subjects started Task 1. If the subject had

completed the task in less than 6 minutes, the task was finished, NIRS recording was paused

and the time was recorded. Otherwise the task was ended unfinished and recorded so, and

again NIRS recording was paused. Following this, NASA-TLX form was given to the subjects.

After completing the NASA-TLX, the subject was asked to complete Task 2 with the same

procedure of resting state and task NIRS recordings, time recordings and fulfilling of

NASA-TLX forms respectively and the experiment was finished. The completion time of task

is recorded for each subjects during the experiment.

Optical imaging

Functional neuroimaging data was collected using a high density NIRS device (NIRSIT, OBE-

LAB, Korea). This system has 24 laser source (780/850nm) and 32 photo detectors at a sam-

pling rate of 8.138Hz. This device uses 204 channels in total attached to the forehead of the

subjects for measurements. Each type of channel covers the areas coinciding with lower parts

of the dorsolateral prefrontal, upper part of the orbitofrontal and medial prefrontal, and part

of the ventrolateral prefrontal cortex.

The NIRS system that was picked for the experiment was capable of measuring signals from

four source-detector (SD) separations: 15, 21.2, 30, and 33.5 mm, and this allowed the mea-

surement of alterations at various depths. Movements were tracked in real-time by using a

gyroscope and an accelerometer. The measurements were obtained from the prefrontal cortex,

where the center of the lowermost optical probes was aligned to the frontal pole zero (FPz)

location of the 10–20 EEG system to remove positional uncertainty between subjects.
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Data analysis

Preprocessing. The detector readings at two wavelengths for each channel were converted

into concentration changes of oxy- and deoxy-hemoglobin by using the modified Beer-Lam-

bert Law [22]. The differential path length factor (DPF) values for light wavelengths 780 nm

and 850nm are 5.075 and 4.64 in respectively [23, 24].

The haemoglobin time series thus obtained contain information about the local brain activ-

ity as well as extraneous components, considered as artifacts, arising from non-cerebral tissue

and muscle activations, respiration and heartbeat, as well as from systemic physiological effects

such as Mayer waves. Other common artefacts are signal transients due to head movement.

These may create temporary variations in optical coupling leading to excursions in the detec-

tor readings. A comprehensive review of techniques designed to detect and minimise such arti-

facts is provided in [25].

Fig 1. Experiment description. (A) Schematic depicting the laparoscopic box simulator where surgeons and students perform the FLS tasks. High density, wireless

NIRS is used to measure functional brain activation. (B) Optode positions cover the frontal cortex (24 sources and 32 detectors). Red circles are sources, blue circles are

detectors C) Channel numbers with different source-detector separations. Total 204 channels: 52 channels with a separation distance of 1.5 cm, 36 with 2.12 cm, 68 with

3 cm, and 48 with 3.35 cm D) Experimental protocol design. Schematic showing the experimental design for this study. All attending, resident and students performed

the FLS tasks. After each Nirs recording, participant filled out the NASA-TLX.

https://doi.org/10.1371/journal.pone.0247117.g001
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The changes in hemoglobin concentrations were band-pass filtered in the range 0.01–0.5

Hz in order to diminish components with characteristic durations briefer than ~2 s and

greater than ~100 s. This eliminated the effects of respiration (~0.3 Hz), the heart beat (~1

Hz), helped reduce some motion artefacts that had sharp transients, and reduced the slow

baseline drift [26]. The characteristic scale of Mayer waves, with a period of ~10 s, partly over-

lap with task evoked hemodynamic responses hence we did not attempt to filter them out;

however they were not expected to influence our results, as Mayer waves likely do not correlate

with cognitive load [27].

Next we used windowed standard deviation to quantify the presence of motion artefact

[28]. This approach focussed on motion artefacts associated with excursions greater than that

from the concurrent physiological effects. Note that if the standard deviation of the motion

artefact was smaller, this implied that it was not a severe artefact. We calculated the standard

deviation in nonoverlapping 10 s windows, and the median absolute deviation (MAD) of the

set of standard deviations for each channel. Any window whose standard deviation was greater

than 4.5 MAD values away from the median was considered as an outlier and excluded from

subsequent analysis.

To confirm the plausibility of this approach we visually inspected the signals from ran-

domly selected segments of the recordings from multiple subjects and experimental condi-

tions. The outlier tended to occur approximately around the same time as increases in the

accelerations as measured by the headset. Virtually all severe deflections were captured while

many outliers contained only mild fluctuations, suggesting that our criterion was conservative.

Feature extraction and selection. As an indicator of the local activations in the prefrontal

cortex we computed the standard deviation of the oxyhemoglobin changes in each channel

over 10 s windows. Because greater evoked hemodynamic response tends to increase the stan-

dard deviation of the signal in a window, we took these values as the measure of the prefrontal

activation. Note that the window mean of the signal may not be as good an indicator of activa-

tion in some cases when the evoked response is brief and followed by a dip. By separately

exploring other variables such as the window mean, skewness and kurtosis, we determined

that the standard deviation was the best indicator for the types of analysis reported in this

paper. The standard deviation or variance have frequently been used in machine learning stud-

ies with fNIRS [29–31]. Other feature extraction techniques were described in [32]. The activa-

tions were used for analysing the information available from the channels with different

separation distances. For some calculations we used the signals from the channels with a sepa-

ration of 1.5 cm to perform superficial signal regression (SSR) in the 3 and 3.35 cm channels,

in accordance with the methodology in [33]. This was done in order to explore the ability of

short separation channel signals to eliminate the signal component originating from layers

above the cortex. The feature types were prioritised by using the Pearson correlation between

the observations and the labels, a standard feature-selection technique [23 and references

therein]. The prioritization was used to select a small subset from the full set of features in the

classification. Other feature selection techniques were also explored but not adopted since they

did not appear to improve the classification accuracy. These were the Minimum Redundance

and Maximum Relevance and the Chi-square tests, as implemented by Matlab’s func-

tionsfscmrmr and fscchi2, respectively (Matlab v.8.2.0.701; The MathWorks, Inc., Natick, Mas-

sachusetts, United States).

Classification. We examined the cerebral hemodynamic correlates of NASA-TLX by seg-

regating the ratings into sets of high and low scores. For each subject and episode the mean

score (average over the 6 dimensions of the NASA-TLX) was used. The high/low scores were

discriminated by using the median score as a cut-off value. Separate cut-off values were used

for the Student and Attending groups of subjects. The statistical significance of the difference
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between two sets of values (e.g. high v low scores or Student v Attending subjects) was deter-

mined by means of the non-parametric Kolmogorov-Smirnov test.

We also examined the ability of prefrontal activations to discriminate between the subjects’

subjective experiences (high v low NASA-TLX score) as well as their skill levels (Student v

Attending), by using machine learning techniques. The scores or the skill levels were used as

the binary valued labels to be classified. For this purpose feature matrices were built with each

row (an observation) representing the standard deviations averaged over an episode (e.g. Task

1) for a subject. Each column of the feature matrix corresponded to a channel. The columns

therefore represented types of features available. We then chose a small group of features from

the prioritised list of features and used it to train Support Vector Machines (SVM) with linear

kernels. The accuracy of the SVMs were determined by means of 5-fold cross validation. Note

that because each row is an entire experimental episode for a subject, the data from a subject

that is in the training set was automatically excluded from the test set. This process was

repeated 2000 times to obtain a distribution of accuracy values, revealing the variability due to

different training-test partitions. The small set of features was then enlarged by progressively

including more types of features and repeating the classification. This procedure allowed us to

examine the accuracy as a function of the number of features used, and to focus on particular

subsets of the local activations.

Statistical analysis

In order to assess the statistical significance of the difference between two groups of paired

results, we used the non-parametric Wilcoxon signed-rank test. The descriptive results (Figs

2–4) comparing two groups, such as low v high cognitive load or student v attending subjects,

contained paired data for each channel. The null hypothesis was that the results from both

groups were drawn from the same population. In testing this hypothesis we utilized the Bon-

ferroni procedure which insured that if each of the k tests has p< a / k, then the null hypothe-

sis will be falsely rejected with a probability no greater than a. We set a = 0.05; and k = 16, the

product of the four types of channel separations and the two prefrontal sides (right v left). In

assessing the statistical significance of the differences in the topographic representation (Fig 5)

we consulted the corresponding box plots in Fig 4 as explained in the Results. The statistical

significance of the accuracy of prediction was determined through the permutation technique

[34]. In this technique we randomly shuffled the labels and reassigned them to the observa-

tions, thereby creating a surrogate set of data. This was then used in classification following the

steps of feature selection and cross validation, and generated a null distribution of accuracy

values. In order avoid crowding the plots with indications statistical significance, in presenting

the results of classification (Figs 6–8) we show the null and actual distributions as shaded areas

so that the ranges where they were sufficiently distinct (and likely statistically significantly dif-

ferent) were visually evident.

Results

In this section we present the results of our analysis of the fNIRS data recorded from Student

and Attending subjects. We hypothesized that the task related activations of PFC (measured

by using changes in the optical signal as described in Methods) would reflect the subjective

experience of the subjects as well as their levels of skill and, furthermore, that there would be

differences in the activations due to the different sampling depths of the channels with differ-

ent separation distances. The subjective experiences were monitored using responses to the

NASA-TLX questionnaire. We considered subjects in two groups of skill levels: Students who

had no laparoscopy or training experience and Attending residents who had previously
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Fig 2. Prefrontal activation associated with high and low NASA-TLX scores. Channel separation distance for each column are labelled at the top of the

figure. Student subjects only are shown. The high/low cut-off was the median score. On each box, the central mark indicates the median while the bottom and

top edges indicate the 25th and 75th percentiles. Circles represent individual channels. Statistically significant difference between high and low scores is

indicated by an asterisk above the boxes. The right and left prefrontal activations are shown separately as labelled at the bottom of the plot. The results for task

1 and 2 are shown in the top and bottom rows. For the values shown in this figure, please see S2 Table.

https://doi.org/10.1371/journal.pone.0247117.g002

Fig 3. Prefrontal activations associated with high and low NASA-TLX scores. This figure contains the same results as in Fig 1, but it is for the attending

subjects. For the values shown in this figure, please see S3 Table.

https://doi.org/10.1371/journal.pone.0247117.g003

PLOS ONE Neuroimaging for predicting surgeons’s brain

PLOS ONE | https://doi.org/10.1371/journal.pone.0247117 February 18, 2021 8 / 19

https://doi.org/10.1371/journal.pone.0247117.g002
https://doi.org/10.1371/journal.pone.0247117.g003
https://doi.org/10.1371/journal.pone.0247117


performed a median of 75 laparoscopic operations (Table 1). We first compared the high v low

NASA-TLX scoring subjects’ activations (Figs 2 & 3), then the effects of skill level (Fig 4), and

the topographic distributions of the differences due to skill level (Fig 5). We next used auto-

mated classification in order to quantify the ability of the fNIRS signals to predict the subjec-

tive experience during the training tasks as well as the skill level of the subjects (Figs 6 and 7).

Fig 4. Prefrontal activations associated with student and attending subjects for task 1 and task 2. For the values shown in this figure, please see S4 Table.

https://doi.org/10.1371/journal.pone.0247117.g004

Fig 5. Topographic projection of the prefrontal activations in task 1, for the student (top row) and attending (bottom) subjects. Different channel

separation distances are shown as different columns as labelled at the top of the figure.

https://doi.org/10.1371/journal.pone.0247117.g005
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Group differences

Fig 2 shows that in the Student subjects who experienced higher task load also had higher PFC

activations. The figure shows each channel as a circle and the box indicates the range from the

25th to the 75th percentiles, with the line inside box showing the median. The y-axis is the stan-

dard deviation of the oxyhemoglobin changes averaged over an episode, such as Task 1 or 2,

and over subjects. The variability of the response appeared lowest in the shortest and greatest

in the longest separation (3.35 cm, D and H) channels. The figure shows that the right and left

PFC differences in 3 cm channels was significant in the low load students.

Fig 3 presents the corresponding results this time for the Attending subjects. The figure

indicates that while there was a similar tendency for the variability in the response to increase

with channel separation, the difference between the high and low task loaded subjects was

reversed relative to those of Student subjects. The Attending subjects who reported higher task

load generally had lower PFC activations, the difference being statistically significant only in

the shortest separations in Task 1 in the Right PFC.

Having examined the fNIRS correlates of task load, we turned to the effects of the differ-

ences in skill level. Fig 4 shows that lack of prior laparoscopy experience correlated with higher

PFC activation. The students has significantly higher activations than Attending residents for

most of the different sampling depths. In addition, for the student subjects there was a pro-

nounced asymmetry in the case of the deepest sampling channel (D and H), the activation on

the left being higher than on the right, although the asymmetry did not reach statistical

significance.

Fig 6. Accuracy of classification of the NASA-TLX score of student subjects in task 1. The scores were segregated into sets of high and low values by

using the median score as cut-off and predicted based on prefrontal activations by using support vector machine. A-D show the accuracy as a function of the

number of channels used. The thick curves are the mean of 2000 repetitions of different 5-fold cross-validations. The shaded region indicates the standard

deviation of the variability in the accuracy. The results (blue curve) are compared with those from a surrogate set that contained the same data but the scores

were randomly reassigned prior to classification (black). E-H show the frontal view locations of selected channels that resulted in high accuracy.

https://doi.org/10.1371/journal.pone.0247117.g006
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The box plots so far presented show the values obtained from each channel, however it is

instructive to see the locations of the individual channels together with their activations. To

that end we present in Fig 4, the colour coded frontal view of activation projected on a drawing

of the brain in order to illustrate the approximate locations. They were interpolated between

the channels to show the spatial changes over a continuous field of activation. This figure only

Fig 8. Accuracy of classifying subjects into student v attending in task 1 for channel separations of 3 and 3.35 cm,

using superficial signal regression (SSR) from the 1.5 cm channels. This figure is the counterpart to subplots C-D of

Fig 6 using SSR. The channel locations in C are not shown since the accuracy was low overall.

https://doi.org/10.1371/journal.pone.0247117.g008

Fig 7. Accuracy of classifying subjects into student v attending in task 1. The subplots represent the same kind of information as in Fig 5.

https://doi.org/10.1371/journal.pone.0247117.g007
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presents the results for Task 1. In the short channels (A, E, B, F) the difference between student

and Attending subjects appears as a small difference in the tone distributed over the entire

region. E.g. the blue in A and B are somewhat lighter than in E and F. That difference is the

counterpart of the relatively shifted locations of the boxes in Fig 4A & 4B.

In the normal channel (C and G) there is a hint of high activation localized near the top left,

within the dorsolateral PFC. The localization of the higher activation in student subjects is

most apparent in the deep sampling channel (D and H). In student subjects (D), higher activa-

tion is visible by inspection in parts of the left lateral PFC and the orbitofrontal cortex. Some

activation is localized near the lower part of the right dorsolateral PFC, although lower than

that in the left.

To evaluate the statistical significance of the differences between the student (first row) and

attending (2nd row) subjects in Fig 5, we used the corresponding box plots in Fig 4. Consider,

for example, the higher PFC activation in the students relative to the attending population,

namely the yellow regions in Fig 5D contrasted with the blue colour of the same regions in Fig

5H. This difference was significant because, as shown by box plots in Fig 4D, the activation in

the student population in the left PFC was significantly different than that in the attending

population.

Machine learning results

The results so far showed the differences in PFC activations of subjects who reported different

cognitive load and had different skill levels. In order to delve deeper into these differences, and

quantify the amount of information that PFC activation may contain with regard to subjective

experience, we used machine learning techniques. Using progressively greater numbers of fea-

tures (prioritized as described in Methods) to predict subjects’ NASA-TLX score led to the

accuracies shown in Fig 6. As before, each column shows the results for a different channel

separation distance. The top row of the figure (A-D) indicates that the accuracy and its range

of variability under repeated cross validation (blue curve and shaded) are greater than expected

by chance alone (black curve and gray shaded). In the short separation channels (A-B) the

accuracy depends relatively little on the number of features included in classification. In B, the

accuracy rises slightly with increasing number of features.

By contrast in the normal separation channel (Fig 6C) the accuracy is high in a small system

and decreases quickly with increasing number of features. In order to visualize the locations of

the channels which are responsible for the highest accuracy, we show their locations in the

topographic plots directly underneath. For example G shows the four 3 cm separated channels

that are in the small system whose accuracy is shows to be nearly 90% in C. The accuracy of

the deep sampling channel (D) peaks at around 12 channels, whose locations are shown in H.

Table 1. Subject demographics and descriptive data.

Group Demographics

Group Number Median SE In Years

(Range)

SE In Years Mean

±SD

Median Age

(Range)

Age Mean

±SD

Median LSE In Number

(Range)

LSE In Number Mean

±SD

Undergraduate

Student

17 0(0–0) 0±0 19 (18–27) 19.8±2.2 0(0–0) 0±0

Surgery Resident 5 1.5(0,2–3) 1.8±1 28 (26–29) 27.6±1 0(0–40) 9±15.6

Attending Surgeon 11 12(5–30) 12±6.8 37 (28–55) 37.4±7 75(8–350) 133±120.8)

SE:Surgery Experience; LSE: Laparoscopic surgery experience.

https://doi.org/10.1371/journal.pone.0247117.t001
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For the short separation channels the accuracy plots (A-B) are relatively flat, therefore we

show a larger number of channels (the first 20) from the prioritised list (E-F).

Fig 7 gives the corresponding results for the prediction of skill levels. The figure indicates

that the classifying ability of the short channels are spatially distributed (as in the previous fig-

ure), producing a relatively flat curve for the accuracy as a function of the number of features

(A-B). This is reflected in the wide coverage of the channel locations of the first 20 channels

(E-F). The normal separation channel gives the highest classification accuracy for small sys-

tems (C) and the locations of the first 4 channels are shown (G). As distinct from Fig 6 which

was for classifying task load, Fig 7 shows that in the case of classifying skill levels only a small

number of deep sampling channels (H) participate in generating the highest accuracy (D).

Some of the results we presented above were from Task 1 only (Figs 4–7). The counterparts

of these results from Task 2 were on the whole similar with only minor differences, and were

not shown.

Discussion

In this paper we used high-density continuous-wave fNIRS data recorded from surgery stu-

dents and Attending residents to show the extent of group differences in PFC activation

between subjects with different levels of skill and subjective task load. We quantified the ability

of PFC activation to predict the differences in skill and task load while focussing on the effects

of fNIRS channel separation distance on the results. Our recordings were carried out using 52

channels with a separation distance of 1.5 cm, 36 with 2.12 cm, 68 with 3 cm, and 48 with 3.35

cm, each type of channel covering the areas coinciding with lower parts of the dorsolateral pre-

frontal, upper part of the orbitofrontal and medial prefrontal, and part of the ventrolateral pre-

frontal cortex (Fig 1). Our measure of PFC activation was based on the optically detected

variability in the local changes in oxyhemoglobin concentrations. We also examined the effects

of superficial signal regression by using the signal from the shortest (1.5 cm) separated chan-

nels to minimize the non-cerebral component from that of the normal (3 cm) and long (3.35

cm) separated channels.

The PFC activation was greater in students who reported higher-than-median task load, as

measured by the NASA-TLX survey. This difference, visible in most channel separations, was

statistically significant in all the 3 cm separated channels (Fig 2). Higher engagement of the

PFC with greater task load is well known from previous studies [e.g. 25]. However in the case

of Attending subjects the opposite tendency was observed, namely higher activations in the

lower v higher task loaded subjects. This reversal was statistically significant in some of the 1.5

cm separated channels (Fig 3). This change in skilled subjects’ PFC response relative to that of

unskilled ones may have been due to the fact that parts of our experimental procedure and the

stylized tasks unavoidably differed from the actual laparoscopic operations to which the skilled

participants were accustomed. In such non-optimal situations the experts’ established schemas

are sometimes not applicable leading to higher cognitive load than in novices, in what has

been called the expertise reversal effect [35].

We found that response was greater in the left PFC of students (Fig 4D and 4H), particu-

larly near the dorso- and ventrolateral areas (Fig 5D), which was in accord with the known

dominance of the left hemisphere in motor action. Previous studies have linked left hemi-

sphere to behavioural efficiency, regardless of the subjects’ handedness [36], as well as to inter-

ference processing [37], the neural representation of grasping [38], bimanual coordination

[39], and overall movement organisation and selection [40]. Interestingly, localisation and lat-

eralization arose in our data only in the deeper sampling channels (with a separation distance

of 3.35 cm) clearly suggesting their cerebral origin. This asymmetry did not arise in Attending
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subjects presumably because the skilled activity in their case had been relatively automated

and its control shifted to non-frontal cortical areas [41, 42]. Note that the greater access to

cerebral activity came at the cost of lower signal-to-noise ratio, reflected in the increasing

response variability with channel separation distance (Fig 4A–4D). Several studies have used

source detector separation distances in the range 2.5–3.5 cm for interrogating brain activity,

and our longest separation is within this range [43–45].

Our results showed that the classification of skill level and subjective task load could be pre-

dicted based on PFC activation. In a machine learning study, the activations were first priori-

tised in terms of their Pearson correlation with the prediction targets (student v Attending or

high v low subjective score), a small subset of the highest priority features (or channels) were

selected for cross-validated prediction of the targets using SVM, then the cross-validated pre-

diction was repeated by progressively increasing the number of features. The resulting accu-

racy of prediction (y-axis) as a function of the number of channels (x-axis) are shown for

subjective task load in Fig 6 and for skill level in Fig 7. Repeated calculations with different

training/test partitioning of the data was a cause of variability in the results. We used this vari-

ability to generate a distribution of results from 2000 repetitions whose standard deviation was

indicated by the blue shaded region in the figures.

In order to examine the statistical validity of the machine learning study we produced sur-

rogate data by randomly scrambling the predicted labels of the original data and repeated the

procedure of feature selection and classification by cross-validation. The mean of this null pop-

ulation of accuracies is shown by the black curves and its standard deviation by the gray

shaded regions in Figs 6 and 7. With a sufficiently large data set and balanced number of tar-

gets the null accuracy was expected to approach 50% however the null accuracy in our results

was clearly biased above 50%. This was due to the fact that we repeated the entire study includ-
ing feature selection with the surrogate data. Consequently when features were selected accord-

ing to their correlation with labels, the spuriously correlated features were assigned high

priorities, and they generated the higher than 50% null accuracies. As expected the null accu-

racy declined toward 50% as larger numbers of features were included, as the figure shows.

This procedure allowed us to properly identify the part of accuracy that was truly above chance

level.

Figs 6 and 7 show that shorter separation channels (1.5 and 2.12 cm) have predictive power

distributed over the frontal regions, which may be indicative of correlations between the pre-

diction targets and systemic effects picked up from the layers above the cortex. By contrast the

longer separated channels had their peak accuracy occurring with only a few channels (Figs

6C, 6G, 7C, 7D, 7G and 7H), suggesting that the discrimination between levels of task load and

skill may be associated with specific PFC areas acting in concert. This finding is consistent

with previous results [46] and may be used as a basis for a practical and light-weight brain-

computer interface.

In order to further investigate the relative contributions of superficial v cerebral layers we

performed SSR, which was designed to minimize the superficial contribution in each longer

separated channel [33]. Fig 8 indicates that SSR drastically reduced the accuracy of the longer

separated channels. The reduction was greater in the 3 cm separated channels. In the longest

separated channels, which probe deeper, post-SSR accuracy was still reasonably high and

peaked with a small number of channels (Fig 8B which is to be contrasted with Fig 7D). This

confirms that the subjects’ level of expertise had a significant effect on the task related PFC

activation, as shown by the response from the longest separated channels. The interpretation

of the overall reduction in accuracy Fig 8 is less clear, however. This could be due to the fact

that the superficial signal was responsible for most of the accuracy (Fig 7C) and the superficial

component was mostly eliminated by SSR resulting in Fig 8A. Or, it could be due to the fact
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that the cerebral signal had a significant role in the accuracy shown in Fig 7C, but SSR caused

much of this to be eliminated because the regressor was taken from channels whose separation

(1.5 cm) was not sufficiently short.

We repeated some of the above calculations by including the signals from the motion sen-

sors of the fNIRS headset as additional features. These included three distinct time series from

the accelerometer and another three from its gyroscope. Including the motion signals as addi-

tional predictors had only minor and unsystematic effects on the accuracy. In addition calcula-

tions, we used the motion signals as the only set of features in classification, and this yielded

accuracies that were no greater than chance. These results further suggested that motion arti-

facts had been sufficiently minimized in our preprocessing steps and did not play a role in our

results.

Our study had some limitations. The standard optical topography has been used in this

study. This method has several disadvantages. First, two dimensional imaging uses sparse

arrangements of source and detector optodes and therefore the positions of the measurement

channels do not always overlap the real activation foci. Therefore, the spatial resolution of

fNIRS imaging is low compared to fMRI. Second, the positions of the measurement channels

relative to brain shape vary among subjects, resulting in reduced reliability of comparison

among subjects. We plan to use the diffuse optical tomography to solve the resolution prob-

lems in the further study.

Short separation channels are essential for accurate fNIRS measurements because they

enable the extra-cerebral signal contribution to be regressed from standard separation chan-

nels. This reduces the chance that extra-cerebral hemodynamics will be falsely interpreted as

functional brain activation. Our results indicates that SSR with 15mm drastically reduced the

accuracy This may have been due to the short separation distance is not enough as a regressor.

Based on the literature [20, 21]; the optimum short-separation distance is 8.4 mm (vary across

the scalp) in the typical adult. The effects of channel separation distance and noncerebral

blood flow have been reported in numerous previous studies [20, 47–51].

The number of surgery resident was not enough for statistical analysis. The recruitment

was not sufficient due to timeline and schedule problems, logistics issues. We have not investi-

gated the effect of the small group of surgery resident and not compare to students and attend-

ing surgeons.

In addition, we have not investigated the longitudional surgical skills learning over time.

There is limited research relating to longitudinal surgical skills learning over time. This can be

also considered in future studies.

Conclusion

In this study, we have evaluated prefrontal haemodynamic responses to a set of surgery tasks

in two groups: students vs attending surgeons. We quantified the ability of PFC activation to

predict the differences in skill and task load between the two groups while focussing on the

effects of fNIRS channel separation distance on the results. The high accuracy of results is

encouraging and suggest the integration of the strategy developed in this study as a promising

approach to design automated, more accurate and objective evaluation methods. Optical imag-

ing is significantly more accurate than current established subjective methods. Our approach

brings objectivity, and accuracy in measuring the mental workload and predicting the cogni-

tive load. In particular, this approach may be expanded to robustly identify and predict surgi-

cal candidates that may achieve faster learning curves for learning complex surgical skills, and

by extension, achieve technical and non-technical mastery with a significantly faster rate than

other surgical trainees. In summary, we hope that this neuroimaging approach for objective
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quantification for will contribute toward a paradigm change in broad applications, such as sur-

gical certification and assessment, aviation training, and motor skill rehabilitation and

therapy.
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42. Nemani A, Yücel MA, Kruger U, Gee DW, Cooper C, Schwaitzberg SD, et al. Assessing bimanual

motor skills with optical neuroimaging. Sci Adv. 2018; 4: eaat3807. https://doi.org/10.1126/sciadv.

aat3807 PMID: 30306130

43. de Roever I, Bale G, Cooper RJ, Tachtsidis I. Functional NIRS Measurement of Cytochrome-C-Oxidase

Demonstrates a More Brain-Specific Marker of Frontal Lobe Activation Compared to the Haemoglobins.

Adv Exp Med Biol. 2017; 977: 141–147. https://doi.org/10.1007/978-3-319-55231-6_19 PMID:

28685438

PLOS ONE Neuroimaging for predicting surgeons’s brain

PLOS ONE | https://doi.org/10.1371/journal.pone.0247117 February 18, 2021 18 / 19

https://doi.org/10.1006/nimg.2000.0674
http://www.ncbi.nlm.nih.gov/pubmed/11133311
https://doi.org/10.1016/j.neuroimage.2013.06.016
http://www.ncbi.nlm.nih.gov/pubmed/23774396
https://doi.org/10.3389/fnhum.2015.00003
http://www.ncbi.nlm.nih.gov/pubmed/25674060
https://doi.org/10.3389/fnagi.2014.00303
http://www.ncbi.nlm.nih.gov/pubmed/25414665
https://doi.org/10.1088/0967-3334/31/5/004
http://www.ncbi.nlm.nih.gov/pubmed/20308772
https://doi.org/10.1186/1743-0003-6-39
http://www.ncbi.nlm.nih.gov/pubmed/19900285
https://doi.org/10.1186/1743-0003-8-34
https://doi.org/10.1186/1743-0003-8-34
http://www.ncbi.nlm.nih.gov/pubmed/21682906
https://doi.org/10.3389/fnhum.2017.00359
http://www.ncbi.nlm.nih.gov/pubmed/28769775
https://doi.org/10.3389/fninf.2018.00033
http://www.ncbi.nlm.nih.gov/pubmed/29922144
https://doi.org/10.3389/fnene.2010.00014
http://www.ncbi.nlm.nih.gov/pubmed/20725524
https://doi.org/10.1016/j.neubiorev.2012.01.004
http://www.ncbi.nlm.nih.gov/pubmed/22305994
https://doi.org/10.1016/j.chb.2020.106406
https://doi.org/10.1016/j.chb.2020.106406
https://doi.org/10.1016/j.bandc.2016.07.005
http://www.ncbi.nlm.nih.gov/pubmed/27472831
https://doi.org/10.1117/1.JBO.19.5.057012
http://www.ncbi.nlm.nih.gov/pubmed/24862561
https://doi.org/10.1016/j.neuropsychologia.2013.09.023
http://www.ncbi.nlm.nih.gov/pubmed/24056296
https://doi.org/10.1016/s0028-3932(99)00062-7
http://www.ncbi.nlm.nih.gov/pubmed/10660227
https://doi.org/10.1162/089892901750363244
http://www.ncbi.nlm.nih.gov/pubmed/11506665
https://doi.org/10.1016/j.surg.2017.09.002
http://www.ncbi.nlm.nih.gov/pubmed/29079277
https://doi.org/10.1126/sciadv.aat3807
https://doi.org/10.1126/sciadv.aat3807
http://www.ncbi.nlm.nih.gov/pubmed/30306130
https://doi.org/10.1007/978-3-319-55231-6_19
http://www.ncbi.nlm.nih.gov/pubmed/28685438
https://doi.org/10.1371/journal.pone.0247117


44. Strangman GE, Li Z, Zhang Q. Depth sensitivity and source-detector separations for near infrared spec-

troscopy based on the Colin27 brain template. PLoS One. 2013; 8: e66319. https://doi.org/10.1371/

journal.pone.0066319 PMID: 23936292

45. Pan Y, Borragán G, Peigneux P. Applications of Functional Near-Infrared Spectroscopy in Fatigue,

Sleep Deprivation, and Social Cognition. Brain Topogr. 2019; 32: 998–1012. https://doi.org/10.1007/

s10548-019-00740-w PMID: 31664637

46. Omurtag A, Aghajani H, Keles HO. Decoding human mental states by whole-head EEG+fNIRS during

category fluency task performance. J Neural Eng. 2017; 14: 66003. https://doi.org/10.1088/1741-2552/

aa814b PMID: 28730995

47. Fekete T, Rubin D, Carlson JM, Mujica-Parodi LR. The NIRS Analysis Package: noise reduction and

statistical inference. PLoS One. 2011; 6: e24322. https://doi.org/10.1371/journal.pone.0024322 PMID:

21912687

48. Zhang Y, Brooks DH, Franceschini MA, Boas DA. Eigenvector-based spatial filtering for reduction of

physiological interference in diffuse optical imaging. J Biomed Opt. 2005; 10: 11014. https://doi.org/10.

1117/1.1852552 PMID: 15847580

49. Kohno S, Miyai I, Seiyama A, Oda I, Ishikawa A, Tsuneishi S, et al. Removal of the skin blood flow arti-

fact in functional near-infrared spectroscopic imaging data through independent component analysis. J

Biomed Opt. 2007; 12: 62111. https://doi.org/10.1117/1.2814249 PMID: 18163814

50. Haeussinger FB, Dresler T, Heinzel S, Schecklmann M, Fallgatter AJ, Ehlis A-C. Reconstructing func-

tional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: an easy-to-use

filter method. Neuroimage. 2014; 95: 69–79. https://doi.org/10.1016/j.neuroimage.2014.02.035 PMID:

24657779

51. Keshmiri S, Sumioka H, Okubo M, Ishiguro H. An Information-Theoretic Approach to Quantitative Anal-

ysis of the Correspondence Between Skin Blood Flow and Functional Near-Infrared Spectroscopy Mea-

surement in Prefrontal Cortex Activity. Front Neurosci. 2019; 13: 79. https://doi.org/10.3389/fnins.2019.

00079 PMID: 30828287

PLOS ONE Neuroimaging for predicting surgeons’s brain

PLOS ONE | https://doi.org/10.1371/journal.pone.0247117 February 18, 2021 19 / 19

https://doi.org/10.1371/journal.pone.0066319
https://doi.org/10.1371/journal.pone.0066319
http://www.ncbi.nlm.nih.gov/pubmed/23936292
https://doi.org/10.1007/s10548-019-00740-w
https://doi.org/10.1007/s10548-019-00740-w
http://www.ncbi.nlm.nih.gov/pubmed/31664637
https://doi.org/10.1088/1741-2552/aa814b
https://doi.org/10.1088/1741-2552/aa814b
http://www.ncbi.nlm.nih.gov/pubmed/28730995
https://doi.org/10.1371/journal.pone.0024322
http://www.ncbi.nlm.nih.gov/pubmed/21912687
https://doi.org/10.1117/1.1852552
https://doi.org/10.1117/1.1852552
http://www.ncbi.nlm.nih.gov/pubmed/15847580
https://doi.org/10.1117/1.2814249
http://www.ncbi.nlm.nih.gov/pubmed/18163814
https://doi.org/10.1016/j.neuroimage.2014.02.035
http://www.ncbi.nlm.nih.gov/pubmed/24657779
https://doi.org/10.3389/fnins.2019.00079
https://doi.org/10.3389/fnins.2019.00079
http://www.ncbi.nlm.nih.gov/pubmed/30828287
https://doi.org/10.1371/journal.pone.0247117

