
Parallel Pruning for K-Means Clustering on

Shared Memory Architectures

Attila Gürsoy and İlker Cengiz

Computer Engineering Department, Bilkent University
Ankara, Turkey

{agursoy,icengiz}@cs.bilkent.edu.tr

Abstract. We have developed and evaluated two parallelization
schemes for a tree-based k-means clustering method on shared memory
machines. One scheme is to partition the pattern space across processors.
We have determined that spatial decomposition of patterns outperforms
random decomposition even though random decomposition has almost
no load imbalance problem. The other scheme is the parallel traverse of
the search tree. This approach solves the load imbalance problem and
performs slightly better than the spatial decomposition, but the efficiency
is reduced due to thread synchronizations. In both cases, parallel tree-
based k-means clustering is significantly faster than the direct parallel
k-means.

1 Introduction

Clustering is an important area which finds application in a variety of fields in-
cluding data mining, pattern recognition, explorative data analysis, image pro-
cessing, and more [1] [2]. K-means [3] is a partitional clustering method and it is
one of the most commonly used clustering algorithms. In this paper, we focus on
parallelization techniques for a faster version of k-means clustering algorithm, a
tree-based k-means method [4].

The k-means (direct) algorithm treats input patterns as points in a d dimen-
sional space and employs Euclidean-distance based similarity metric between
patterns and cluster centers. The algorithm chooses an initial set of cluster cen-
ters and then each pattern is assigned to the cluster represented by the closest
cluster center. After all patterns processed and new clusters are formed, cluster
centers are updated to represent new clusters. The sequential execution time of
k-means can be improved by reducing the number of distance calculations. The
algorithm presented in [4] is one of the such approaches. The algorithm organizes
patterns in a k-d tree. The root of the tree represents all patterns and children
nodes represent patterns in subspaces. In each iteration, the k-d tree is traversed
in a depth-first manner starting at the root node. At the root level, all cluster
centroids are candidates to be the closest centroid to any pattern in the space
represented by the root node. As we traverse the tree, a pruning method is ap-
plied to eliminate some of the candidates for the subspace represented by each

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 321–325, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

322 Attila Gürsoy and İlker Cengiz

node visited. That is, the candidate set that comes from the parent node might
contain some clusters centroids that cannot be closest to any pattern in the sub-
space. When the candidate set is reduced to one cluster centroid, all the patterns
in the subspace is assigned to that cluster. Otherwise, a leaf node eventually is
reached and pairwise distance calculations are performed for all patterns in the
leaf node and cluster centroids in the candidate set.

Parallelization of the direct k-means method is relatively easier. However,
in the case of tree-based k-means, the traverse of the irregular tree structure
complicates parallelization and poses load balancing and synchronization prob-
lems. In this paper, we discuss parallelization of the tree-based k-means method
and propose two different schemes based on pattern decomposition and parallel
search of the k-d tree used in the tree-based algorithm. The main motivation
behind this study is to develop and evaluate alternative parallelization schemes.
The implementation uses Pthreads which is a standard thread interface avail-
able on most multiprocessor systems Although this study is done for shared
memory machines, the proposed pattern decomposition scheme can be used for
distributed memory machines as well.

2 Parallel Pruning for Tree Based K-Means

The parallelization of the tree-based k-means is more challenging due to the ir-
regular tree decomposition of space (since it depends on pattern distribution),
and varying computations during the traversal. The computations done during
the traversal can be coarsely divided into two groups: internal-node computa-
tions and leaf computations. In the internal nodes, the space covered by a node
is compared against the current candidate set of centroids. Since some of the
cluster centroids might have been pruned in the upper levels, the number of
distance calculations (which is proportional to the size of the candidate set) can
vary across internal nodes. At the leaves, similarly, distance calculations among
a differing number of remaining patterns and number of candidates results in
varying computation loads. With this load imbalancing in mind, a way of dis-
tributing computations done at the nodes need to be developed. One approach
is to partition patterns among threads such that each thread is responsible for
the pruning due to the space covered by its own patterns. A second one would
be the parallel traversal of a single tree in a dynamic fashion.

Pattern Decomposition – parallel multiple tree pruning. Pattern decom-
position scheme divides patterns into p disjoint partitions where p is the number
of processors. Then, each partition is assigned to a different thread. Every thread
forms a k-d tree for its own patterns and performs tree based algorithm on its
own set of patterns. This way of parallelization is similar to the parallelization
of the direct k-means scheme. However, the tree version has two major differ-
ences or problems: load imbalance and possibly less pruning compared to the
sequential case. For example, consider two threads, one with a set of patterns
that are concentrated in a small space, and another one with the same number

Parallel Pruning for K-Means Clustering on Shared Memory Architectures 323

of patterns but scattered around much larger space. There will be more pruning
of candidate cluster centroids at the upper levels of the local tree (that belongs
to a thread)) in the case of compact subspace because many cluster centroids
possibly will be far from the compact space. In the case of sparse and larger sub-
space, the pruning might shift towards to the leaves which might result in more
distance calculations. In the direct k-means, it does not matter which patterns
form a partition. However, in the tree-based case, we have to choose patterns
such that the problems mentioned above are addressed. We have tried two dif-
ferent partitioning schemes: (a) random pattern decomposition where each
thread gets equal number of patterns chosen randomly from the space covered
by all patterns, (b) spatial decomposition where each thread gets equal of
number of patterns that belong to a compact space.

Parallel single tree pruning. The possible load imbalance problem of the
static pattern decomposition can be solved by distributing distance calculations
(not the patterns) to threads dynamically. In this scheme, we have a single tree
representing all the patterns. The tree traverse for pruning is parallelized by
maintaining a shared pool of work. A work is a tuple composed of a node (where
the traverse to be started) and a set of candidate clusters. An idle thread simply
picks a work from the queue and applies the pruning procedure starting from
the node possibly going downwards in a depth-first manner. In order to create
enough work for other threads, a thread puts more work (some of its sub-trees
that need to traversed) into the shared queue if there is no work in the queue
for other threads. The advantage of this scheme is dynamic load balancing . An
idle thread will always find work to do as long as some parts of the tree still
have not been traversed. However, this scheme needs to maintain a shared work
queue which requires usage of locks for enqueue and dequeue operations. The
frequency of such operations attempted by the threads has significant impact on
the performance. Blocking kernel-level threads on a lock results in a switch from
user space to kernel space in the operating system and is expensive.

3 Evaluation of the Multiple Tree
and Single Tree Pruning

We have conducted some preliminary performance experiments on a Sun sys-
tem where 8 processors are available. We used two different data sets with
2-dimensional patterns: dataset1 with 100000 patterns and dataset2 with one
million patterns. Dataset1 is the same as in used in [4] which contains randomly
generated globular 100 clusters. For spatial decomposition, we partitioned the
patterns into strips containing equal number of patterns. The execution time
and load balancing data are shown in Table 1 for varying number of threads.
The spatial decomposition has better execution times than the random pattern
decomposition. The reason for this is explained by the amount of pruning done
and the computational load imbalance. We collected statistics about the dis-
tance calculations done at the leaves of the tree. The more distance calculation

324 Attila Gürsoy and İlker Cengiz

means the less pruning done at the interior nodes. For spatial decomposition, the
number of distance calculations increases slightly as the number of threads in-
creases. That is, the amount of work done in the parallel version increases with
the number of threads, but slightly, which results in reduced efficiency. This
effect is more significant in the random decomposition case. The number of dis-
tance calculations increases more than 3 times for 8 threads and this causes the
parallel execution time of the random decomposition to be significantly worse
than the spatial decomposition. On the other hand, random decomposition has
better balanced computational load. The spatial decomposition has upto 20%
load imbalance whereas random decomposition has no more than 6% load imbal-
ance. As a result, the one dimensional spatial decomposition scheme suffers from
load imbalance, random decomposition suffers from increased work due to less
pruning, but overall, spatial decomposition is superior to random decomposition.

Table 1. Load balance and execution time results for pattern decomposition

Num. of Threads Time (seconds) Num. of distance calc. (x106) Load imbalance

spatial random spatial random spatial random

1 18.03 21.34 14.93 14.93 0 0

2 11.92 14.43 14.89 22.64 11 2

3 9.10 14.36 15.73 28.5 12 2

4 7.91 11.52 16.86 34.62 13 6

5 7.15 13.37 17.32 39.02 18 1

6 6.12 16.66 17.40 44.80 20 6

7 6.08 14.90 18.16 50.52 18 2

8 6.40 15.85 19.84 54.25 16 4

Table 2 compares performance of the single tree pruning, spatial-decomposi-
tion, and direct k-means (all parallel) for dataset1 and dataset2. First, the exe-
cution time of the tree-based parallel k-means is significantly superior than the
direct k-means. When we compare single tree pruning and spatial decomposition
techniques, we observed that single tree pruning performs better because it does
not have a load imbalance problem. However, the efficiency is not as good as
the one of the direct k-means. One of the reasons is the locks to access to the
shared queue. Although we tried to reduce the use of locks, performance prob-
lems after five processors are noticeable. Another reason might be due to cache
when the tree is traversed in a dynamic and irregular way. This is particularly
noticeable in the execution time of spatial and random decompositions for one
thread case (Table 1). Both spatial and random decompositions (one thread)
perform exactly the same sequence of computations. However, the random one
is 20% slower (which was tested on several different Sun machines). Since the
number of threads is one, this difference is not due to parallelism. In the spatial
decomposition, the tree is build such that the sequence of memory locations al-
located for nodes mimics the order of nodes visited during the depth-first search

Parallel Pruning for K-Means Clustering on Shared Memory Architectures 325

which (most probably) results in better use of cpu caches. However, in the ran-
dom case, that order is not valid. A similar case is true for the single tree version
(visiting nodes in an arbitrary order). However, both spatial and single-tree cases
are significantly superior than the parallel direct k-means.

Table 2. Execution time for single tree, spatial decomp., and direct

Num. of Threads Dataset 1 (100000 patterns) Dataset 2 (1000000 patterns)

single-tree spatial direct single-tree spatial direct

1 17.99 18.03 145.6 167.55 167.03 1987.91

2 11.48 11.92 73.31 98.98 107.85 996.91

3 8.60 9.10 52.54 71.90 80.97 693.69

4 6.51 7.91 39.36 57.29 67.02 524.83

5 5.73 7.15 31.78 48.62 54.41 419.18

6 5.73 6.12 26.58 42.49 50.61 351.92

7 5.60 6.08 22.58 41.31 49.08 302.97

8 5.87 6.40 20.05 39.66 51.81 269.93

4 Conclusion and Future Work

In this work, we developed and evaluated two parallelization schemes for a tree-
based k-means clustering on shared memory architectures using Pthreads. One
of the schemes is based on pattern decomposition (multiple trees). We deter-
mined that spatial decomposition of patterns outperforms random pattern de-
composition even though random decomposition has almost no load imbalance
problem. The spatial decomposition, on the other hand, can be improved further
by forming partitions in a more clever way and can be used also for running the
algorithm on distributed memory machines. The other approach is the parallel
traverse of the single tree. This approach solves the load imbalance problem,
but the overhead of thread synchronizations need to be handled, for example,
by employing programming environments with more efficient thread support.

References

1. Jain, A. K., Murty, M. N., Flynn, P. J.: Data Clustering: A Review. ACM Computing
Surveys, Vol. 31, No. 3, (1999) 264-323 321

2. Judd, D., McKinley, P. K., Jain, A. K.: Large-Scale Parallel Data Clustering. In
Proc. of the 13th Int. Conf. on Pattern Recognition, (1996) 321

3. McQueen, J.: Some Methods for Classification and Analysis of Multivariate Obser-
vations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, (1997) 173–188 321

4. Alsabti, K., Ranka, S., Singh, V.: An Efficient K-Means Clustering Algorithm.
IPPS/SPDP 1st Workshop on High Performance Data Mining, (1998) 321, 323

	Parallel Pruning for K-Means Clustering on Shared Memory Architectures
	Introduction
	Parallel Pruning for Tree Based K-Means
	Pattern Decomposition -- parallel multiple tree pruning.
	Parallel single tree pruning.

	Evaluation of the Multiple Tree and Single Tree Pruning
	Conclusion and Future Work

