169 research outputs found

    Predictability: a way to characterize Complexity

    Full text link
    Different aspects of the predictability problem in dynamical systems are reviewed. The deep relation among Lyapunov exponents, Kolmogorov-Sinai entropy, Shannon entropy and algorithmic complexity is discussed. In particular, we emphasize how a characterization of the unpredictability of a system gives a measure of its complexity. Adopting this point of view, we review some developments in the characterization of the predictability of systems showing different kind of complexity: from low-dimensional systems to high-dimensional ones with spatio-temporal chaos and to fully developed turbulence. A special attention is devoted to finite-time and finite-resolution effects on predictability, which can be accounted with suitable generalization of the standard indicators. The problems involved in systems with intrinsic randomness is discussed, with emphasis on the important problems of distinguishing chaos from noise and of modeling the system. The characterization of irregular behavior in systems with discrete phase space is also considered.Comment: 142 Latex pgs. 41 included eps figures, submitted to Physics Reports. Related information at this http://axtnt2.phys.uniroma1.i

    The predictability problem in systems with an uncertainty in the evolution law

    Full text link
    The problem of error growth due to the incomplete knowledge of the evolution law which rules the dynamics of a given physical system is addressed. Major interest is devoted to the analysis of error amplification in systems with many characteristic times and scales. The importance of a proper parameterization of fast scales in systems with many strongly interacting degrees of freedom is highlighted and its consequences for the modelization of geophysical systems are discussed.Comment: 20 pages RevTeX, 6 eps figures (included

    Non Asymptotic Properties of Transport and Mixing

    Full text link
    We study relative dispersion of passive scalar in non-ideal cases, i.e. in situations in which asymptotic techniques cannot be applied; typically when the characteristic length scale of the Eulerian velocity field is not much smaller than the domain size. Of course, in such a situation usual asymptotic quantities (the diffusion coefficients) do not give any relevant information about the transport mechanisms. On the other hand, we shall show that the Finite Size Lyapunov Exponent, originally introduced for the predictability problem, appears to be rather powerful in approaching the non-asymptotic transport properties. This technique is applied in a series of numerical experiments in simple flows with chaotic behaviors, in experimental data analysis of drifter and to study relative dispersion in fully developed turbulence.Comment: 19 RevTeX pages + 8 figures included, submitted on Chaos special issue on Transport and Mixin

    Point-particle method to compute diffusion-limited cellular uptake

    Get PDF
    We present an efficient point-particle approach to simulate reaction-diffusion processes of spherical absorbing particles in the diffusion-limited regime, as simple models of cellular uptake. The exact solution for a single absorber is used to calibrate the method, linking the numerical parameters to the physical particle radius and uptake rate. We study configurations of multiple absorbers of increasing complexity to examine the performance of the method, by comparing our simulations with available exact analytical or numerical results. We demonstrate the potentiality of the method in resolving the complex diffusive interactions, here quantified by the Sherwood number, measuring the uptake rate in terms of that of isolated absorbers. We implement the method in a pseudo-spectral solver that can be generalized to include fluid motion and fluid-particle interactions. As a test case of the presence of a flow, we consider the uptake rate by a particle in a linear shear flow. Overall, our method represents a powerful and flexible computational tool that can be employed to investigate many complex situations in biology, chemistry and related sciences.Comment: 13 pages, 13 figure

    Turbulence and coarsening in active and passive binary mixtures

    Full text link
    Phase separation between two fluids in two-dimensions is investigated by means of Direct Numerical Simulations of coupled Navier-Stokes and Cahn-Hilliard equations. We study the phase ordering process in the presence of an external stirring acting on the velocity field. For both active and passive mixtures we find that, for a sufficiently strong stirring, coarsening is arrested in a stationary dynamical state characterized by a continuous rupture and formation of finite domains. Coarsening arrest is shown to be independent of the chaotic or regular nature of the flow.Comment: 4 pages, 5 figures; discussion on the dependence of the arrest scale on the shear rate has been added; figures have been modified accordingl

    Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow

    Get PDF
    We investigate the dynamics of the two-dimensional periodic Kolmogorov flow of a viscoelastic fluid, described by the Oldroyd-B model, by means of direct numerical simulations. Above a critical Weissenberg number the flow displays a transition from stationary to randomly fluctuating states, via periodic ones. The increasing complexity of the flow in both time and space at progressively higher values of elasticity accompanies the establishment of mixing features. The peculiar dynamical behavior observed in the simulations is found to be related to the appearance of filamental propagating patterns, which develop even in the limit of very small inertial non-linearities, thanks to the feedback of elastic forces on the flow.Comment: 10 pages, 14 figure

    Lyapunov exponents of heavy particles in turbulence

    Get PDF
    Lyapunov exponents of heavy particles and tracers advected by homogeneous and isotropic turbulent flows are investigated by means of direct numerical simulations. For large values of the Stokes number, the main effect of inertia is to reduce the chaoticity with respect to fluid tracers. Conversely, for small inertia, a counter-intuitive increase of the first Lyapunov exponent is observed. The flow intermittency is found to induce a Reynolds number dependency for the statistics of the finite time Lyapunov exponents of tracers. Such intermittency effects are found to persist at increasing inertia.Comment: 4 pages, 4 figure

    Acceleration statistics of heavy particles in turbulence

    Get PDF
    We present the results of direct numerical simulations of heavy particle transport in homogeneous, isotropic, fully developed turbulence, up to resolution 5123512^3 (Rλ185R_\lambda\approx 185). Following the trajectories of up to 120 million particles with Stokes numbers, StSt, in the range from 0.16 to 3.5 we are able to characterize in full detail the statistics of particle acceleration. We show that: ({\it i}) The root-mean-squared acceleration armsa_{\rm rms} sharply falls off from the fluid tracer value already at quite small Stokes numbers; ({\it ii}) At a given StSt the normalised acceleration arms/(ϵ3/ν)1/4a_{\rm rms}/(\epsilon^3/\nu)^{1/4} increases with RλR_\lambda consistently with the trend observed for fluid tracers; ({\it iii}) The tails of the probability density function of the normalised acceleration a/armsa/a_{\rm rms} decrease with StSt. Two concurrent mechanisms lead to the above results: preferential concentration of particles, very effective at small StSt, and filtering induced by the particle response time, that takes over at larger StSt.Comment: 10 pages, 3 figs, 2 tables. A section with new results has been added. Revised version accepted for pubblication on Journal of Fluid Mechanic

    Drag enhancement in a dusty Kolmogorov flow

    Get PDF
    Particles suspended in a fluid exert feedback forces that can significantly impact the flow, altering the turbulent drag and velocity fluctuations. We study flow modulation induced by particles heavier than the carrier fluid in the framework of an Eulerian two-way coupled model, where particles are represented by a continuum density transported by a compressible velocity field, exchanging momentum with the fluid phase. We implement the model in direct numerical simulations of the turbulent Kolmogorov flow, a simplified setting allowing for studying the momentum balance and the turbulent drag in the absence of boundaries. We show that the amplitude of the mean flow and the turbulence intensity are reduced by increasing particle mass loading with the consequent enhancement of the friction coefficient. Surprisingly, turbulence suppression is stronger for particles of smaller inertia. We understand such a result by mapping the equations for dusty flow, in the limit of vanishing inertia, to a Newtonian flow with an effective forcing reduced by the increase in fluid density due to the presence of particles. We also discuss the negative feedback produced by turbophoresis which mitigates the effects of particles, especially with larger inertia, on the turbulent flow.Comment: 20 pages, 7 figure
    corecore