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Point-particle method to compute diffusion-limited cellular uptake
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We present an efficient point-particle approach to simulate reaction-diffusion processes of spherical absorbing
particles in the diffusion-limited regime, as simple models of cellular uptake. The exact solution for a single
absorber is used to calibrate the method, linking the numerical parameters to the physical particle radius and uptake
rate. We study the configurations of multiple absorbers of increasing complexity to examine the performance of
the method by comparing our simulations with available exact analytical or numerical results. We demonstrate the
potential of the method to resolve the complex diffusive interactions, here quantified by the Sherwood number,
measuring the uptake rate in terms of that of isolated absorbers. We implement the method in a pseudospectral
solver that can be generalized to include fluid motion and fluid-particle interactions. As a test case of the presence
of a flow, we consider the uptake rate by a particle in a linear shear flow. Overall, our method represents a
powerful and flexible computational tool that can be employed to investigate many complex situations in biology,
chemistry, and related sciences.
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I. INTRODUCTION

Reaction diffusion processes are ubiquitous in many con-
texts ranging from physics and chemistry to engineering [1].
They are also key in biology, where they control enzyme
catalysis, antigen-antibody encounter, fluorescence quenching,
and cellular nutrient uptake [2–4], which serves as the main
motivation for this paper. Nutrient uptake typically takes place
in a fluid: flow can therefore modify the reaction rates [5,6].
This is particularly relevant to unicellular organisms, as the
presence of advection (possibly in combination with motility)
modifies the nutrient concentration field and thus the uptake
rate [3]. In recent years, the interest toward the problem of
chemical reactions involving self-propelled bodies in a flow
has increased also due to the technological advancements in
chemically powered micro- and nanoswimmers [7–9].

Here we focus on the widespread diffusion-limited reactions
[1], corresponding to the limit of reactions whose chemical
step proceeds much faster than the diffusive transfer of the
components. Cellular uptake by a spherical cell of radius
R can be approximated [2] by imposing perfect absorbing
conditions at the particle surface (i.e., vanishing concentration
field ρ on the sphere’s surface). For an isolated spherical cell
of radius R much larger than the nutrient’s size, the stationary
reaction (or uptake) rate is given by the Smoluchowski formula
[10] κs = 4πDRρ∞, where D is the diffusion constant of the
nutrient field and ρ∞ is the concentration at infinity. When
many absorbing cells are present, diffusive interactions come
into play [11–15]. This problem of nutrient shielding becomes
even more complex in the presence of a flow that transports
the reactant and/or when the cells move autonomously. Other
complex situations of biological interest include the effects
of concentration fluctuations [16]; of confining, compartmen-
talization, and active transport of reactants [17,18], such as

for many biochemical reactions occurring within the cell; and
the complex dynamical organization of the plasma membrane
[19], where dynamic clustering [20,21], lipid-raft association
[22,23], and interactions with cytoskeletal elements [19] of
receptors are central in regulating how ligand binding triggers
biochemical signaling cascades [24].

In all these cases, one is interested in quantifying the relative
efficiency of the process in terms of the ratio between the
total uptake rate and the bare diffusive uptake rate of isolated
absorbers and receptors, i.e., the Sherwood number Sh. For
instance, Sh < 1 is typically an indication of diffusive inter-
actions (i.e., mutual screening of diffusive ligand flux among
receptors, leading to destructive interference) [11,14,15], while
Sh > 1 can be obtained when the cell moves relative to the sur-
rounding fluid [3]. Clearly, understanding the adaptations lead-
ing to (or induced by) values of Sh differing from 1 is key to de-
ciphering the life strategies of many unicellular organisms [4].

Advancements in this field require experimental, theoreti-
cal, and computational work coupling fluid dynamics, ruled by
the Navier-Stokes equation, with the reaction-diffusion rules
of reactants. In the case of natural or artificial microswimmers,
theory and computations must correctly describe particles that
are advected by the flow, modify it, and react with the trans-
ported concentration fields. This is a formidable challenge, as
it requires resolving the dynamics on many scales, particularly
when the fluid is turbulent.

In the absence of a flow, several computational methods
have been developed, based on the finite-element method
[25,26], the molecular-dynamics method [27,28], multipole
expansion techniques [29–31], and first-passage Monte Carlo
techniques [32–36]. In principle, in this case diffusive interac-
tions among many different boundaries can be accounted for
exactly via reexpansion formulas for a wide array of geometries
[37,38]. Recently, for example, translation addition theorems
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for solid spherical harmonics have been used to compute
the reaction rate of diffusion-influenced reactions [15] and to
investigate transient heat transfer [39] in the presence of many
spherical boundaries. These theoretical treatments have the
advantage that in many cases simple analytical estimates can
be obtained by truncating the associated multipole expansions.
For example, when the majority of boundaries are absorbing,
simple monopole approximations have been shown to yield
surprisingly accurate results [11,12,15]. The case of moving
absorbers has also been investigated in [40,41].

Conversely, for the problem of nutrient uptake in the
presence of a flow, there are fewer numerical investigations.
Recent works have studied the uptake of nutrients by active
swimmers in a thin film stirred by their motion [42] and by
diatom chains in two-dimensional flow [43]. These studies
have generalized the immersed boundaries method (IBM) [44]
to account also for the reaction process. The IBM converts
the no-slip boundary condition at the body (of the particle or
of other structures) into a set of forces applied on the fluid
in the neighborhood of the particle surface so as to ensure
that the boundary conditions are fulfilled. In the same spirit,
the boundary conditions on the nutrient concentration field are
imposed in terms of appropriate sinks around the particle [42].
When considering many (possibly swimming) particles in a
stirred fluid, potentially turbulent, the above methods become
too complex to be used unless limiting the number of particles,
which need several grid points to be properly resolved.

In this work, we present a numerical method for computing
the diffusion-limited uptake of nutrients by small spherical par-
ticles inspired to the force coupling method (FCM), introduced
by Maxey and collaborators [45,46]. The basic idea of the FCM
is to represent each particle by a force distributed over a few
grid points. Notwithstanding these limitations, the method is
numerically very effective and compares well with analytical
[46] and experimental results [47]. We extend the FCM to
the transport of nutrients by replacing the absorbing boundary
conditions with an effective sink of concentration localized at
the particle position (see [48] for a similar approach). This
method can be easily implemented in the presence of a flow
and also for self-propelled particles. In this work, however,
we mainly focus on the diffusive problem and compare the
results of the FCM with analytical solutions and with the exact
solutions obtained by a multipole expansion method coupled
to reexpansion formulas [15]. In this method, the stationary
density field is written formally as a sum of as many multipole
expansions as there are boundaries (and local spherical frames
of reference). Then, translation addition theorems for solid
spherical harmonics [38] are used to express the whole density
field on each boundary in turn, so that the appropriate local
boundary conditions can be imposed as many times as there
are boundaries. We also present preliminary results for a single
absorber in the presence of a linear shear flow, leaving the study
of more complex flows to future investigations.

The material is organized as follows. In Sec. II we present
the method, its implementation, and we consider the case of
an isolated spherical absorber to explain how the numerical
parameter should be calibrated in order to reproduce the
Smoluchowski result. Then in Sec. III we show the results of
the numerical method in resolving the diffusive interactions
between multiple absorbers in different configurations. In

particular, we consider two absorbers placed at varying dis-
tance. Here we can compare with an exact analytical theory
[15], allowing us to discuss the limitations of the method when
the particles are too close, or too far apart. After that, we
consider triads (triangles) and tetrads (regular tetrahedra) of
particles. Then we use the method to study random clusters of
absorbing particles, either filling a sphere or a spherical shell,
comparing the results with both exact numerical calculations
and approximate analytical theories. Finally, we show how the
reaction rate is modified in the presence of a linear shear flow,
comparing our results with approximate theories developed in
[49]. In the final section, we draw our conclusion and describe
some possible applications of our method.

II. THE NUMERICAL METHOD

We consider a set of N absorbing spherical particles of
radius Ri at positions X i(t) (i = 1,2, . . . ,N). The scalar field
ρ(x,t) obeys the diffusion equation with an absorbing bound-
ary condition (i.e., ρ = 0) on the spheres’ surface. As discussed
in the Introduction, we replace the boundary conditions at
the particle surface by a volumetric absorption process of
first order localized over regularized δ functions f (x − X i)
centered on the particle positions. Hence the concentration field
obeys the equation

∂tρ = D∇2ρ − ρ

N∑
i

βi f (x − X i), (1)

where βi is the (constant) volumetric absorption rate of particle
i. By making βi depend on the concentration, the sink term in
(1) can mimic the saturable kinetics of Michaelis-Menten-type
often used for modeling cellular uptake [43]. In this work,
however, we are interested in modeling perfectly absorbing
spheres, for which a number of results are at hand. Therefore,
we take the absorption rate constant and we have to determine
how βi is related to the effective radius of the absorbing sphere.
We remark that our method can be implemented also in the
presence of a flow by adding the advection term in (1), and
also in the case of self-propelled particles, including the fluid-
particles interactions [45,46].

We integrate the diffusion equation (1) by a standard
pseudospectral method in a cubic domain of size L = 2π

consisting of M3 grid points (with M between 64 and 256)
with periodic boundary conditions in all directions. Time
evolution is computed by using a second-order Runge-Kutta
scheme with exact integration of the linear term. The use of
periodic boundary conditions makes the problem equivalent
to the case of an infinite periodic cubic lattice of sinks, for
which the total concentration decays in time [12]. To reach
a stationary state, one can add a source term to (1), e.g.,
by imposing a fixed concentration over a large bounding
sphere in the computational domain [14], but this cannot be
used in the presence of a flow. Another possibility is to add
a homogeneous source term to (1), as was done in [48].
Because here we are mainly interested in benchmarking the
numerical method with known results of isolated absorbers in
an infinite volume, we add no source terms to the equations,
and we perform the simulations in the condition of a slowly
decaying nutrient. Nonetheless, by considering a sufficiently
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large domain with respect to the absorber configurations, the
effects due to periodicity appear only at long times, and, as
we will see, they do not limit the possibility to measure the
nutrient uptake in conditions equivalent to the infinite domain.

There are several possibilities to implement the regularized
δ function f (x). For instance, for particle-flow interaction a
Gaussian function is typically employed [45,46]. The Gaus-
sian, however, does not have a compact support and thus is
numerically not very convenient. Here, we adopt a computa-
tionally more efficient choice inspired to immersed boundary
methods [44]. We consider the discretized δ function f (x) as
the product of identical one-variable functions φ(x) rescaled
with the mesh size δx = L/M ,

f (x) = 1

δx3
φ
( x

δx

)
φ
( y

δx

)
φ
( z

δx

)
, (2)

where x,y,z are Cartesian coordinates. The function φ is cho-
sen to be symmetric, positive, with a compact support around
its center, and normalized. The numerical implementation of
(1) requires an evaluation of (2) on a discrete number of points
spaced by δx. A convenient choice of φ, which is normalized
independently of the number of support points and of the
position of the center relative to the grid (i.e., approximately
grid-translational-invariant), is [44]

φ
( x

δx

)
=

{
1
n

[
1 + cos

(
2πx
nδx

)]
,

∣∣ x
δx

∣∣ � n
2 ,

0 otherwise.
(3)

The particle has a “numerical radius” given by a = (n/2)δx,
which is in general different from its effective radius R, i.e.,
the radius of the equivalent absorbing sphere, which will (as
shown below) depend on both a and βi . Note that the particle
position X i in (1) takes real values in three-dimensional space.
Consequently, the smoothed δ function is centered at any
arbitrary position, but the function itself is evaluated only on
n3 grid points.

The uptake rate κi of particle i can be directly computed
from the integral of the sink term in (1),

κi(t) =
∫

βi f (x − X i)ρ(x,t)d3x, (4)

where the integral is numerically evaluated by the sum over
the grid points defined in (3). The global uptake rate is then
obtained by summing (4) over all the particles, or alternatively
measuring the rate of change of the volume averaged concen-
tration C(t) ≡ 〈ρ〉 = V −1

∫
ρ(x,t)d3x. By integrating (1), it

is easy to see that

dC

dt
= − 1

V

N∑
i=1

κi(t). (5)

A. Calibration of the numerical method

In this section, we show how the effective radius R of an
absorber depends on β and the numerical radius a. Toward that
end, we perform a set of numerical simulations considering a
single absorbing sphere in an initially uniform scalar field,
ρ(x,0) = ρ0, for different values of the absorption rate β. In
all simulations, we fixed n = 4 in (2) (as is customary in the
IBM [44]), the scalar diffusivity D = 0.01, and ρ0 = 1.
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FIG. 1. Time evolution of the uptake rate κ(t) for different values
of β, from top to bottom: 2 (red), 2 × 10−1 (orange), 5 × 10−2

(green), and 2 × 10−2 (cyan). Inset: [κ(t) − κs]/κs vs τ = t/τD [τD =
R2/(πD) with R obtained from the fit based on Eq. (6)]. For short
times, all the curves collapse on the line 1/

√
τ (black line) as predicted

by (6). Simulations have been performed with resolution M = 64.

The effective radius can be obtained comparing the absorb-
ing rate with the Smoluchowski result. More precisely, since
our simulations are time-dependent, as explained above, one
needs to compare the time evolution of the uptake rate (4) with
the Smoluchowski solution of the time-dependent diffusive
problem (see Appendix A):

κs(t) = 4πDRρ∞

(
1 + R√

πDt

)
. (6)

We use the same symbol for both the time-dependent and the
steady solution, for the latter κs = 4πDRρ∞, obtained from
(6) when t → ∞, the time dependence is omitted.

Figure 1 shows the evolution of the uptake rate κ(t),
computed from (4), as a function of time for different values
of β. Two regimes are observed: at the beginning the diffusive
regime described by (6) is well evident (see the inset), while
for longer times a slower decay due to the boundedness of the
domain sets in. By fitting κ(t) with the expression (6) in the
first regime, one obtains two independent estimates of R (from
the constant term and from the time-dependent term). For all
values of β, the two measures give the same value of R within
2% of error.

The result of the calibration for the effective radius R is
shown in Fig. 2 for different resolutions M . For small β, the
effective radius R is proportional to the absorption rate. For
large β, R saturates to a = (n/2)δx, which depends on the
resolution as n is fixed and the mesh size changes as δx =
L/M .

To rationalize this behavior and eventually find an analytical
fitting expression for R, we resorted to a crude approximation
for the regularized δ function assuming a spherical sink
function of radius a, in polar coordinates f (r) = 
(a − r)/Va ,
where 
 is the Heaviside step function, r is the distance from
the sphere center, and Va = 4πa3/3 is the sphere volume. With
this form for f (r), the stationary solution of (1) in infinite space
is easily solved (see Appendix B). The analytic expression
of the uptake rate [see Eq. (B5)], when compared with the
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FIG. 2. Effective radius R obtained from κ(t) fitted with (6) vs β

for different resolutions as labeled. The dashed curves display Eq. (7)
with a = (n/2)(L/M). Inset: zoom in the range β > 10−3.

Smoluchowski rate, yields

R = a −
√

DVa

β
tanh

(
a

√
β

DVa

)
, (7)

which shows a remarkable (within 10%) agreement with the
effective radius obtained with the fitting procedure (see Fig. 2).
Thus Eq. (7) can be used as the calibrating function. Notice that
for small β, Eq. (7) yields R = β/(4πD), which is the result
one would obtain by replacing f with a true δ function in (4),
while R → a for large β. Typically, in our simulations we fixed
β = D = 0.01, which leads to an effective radius R � a.

It is worth remarking that, as in the case of the force-
coupling method for fluid-particle interaction [45,46], the
diffusive boundary layer is not well resolved at the scale of
the regularization. This is apparent in Fig. 3, which displays
the profile of the scalar field as a function of the distance
from the particle. The analytical expression obtained from
Eq. (A2) agrees well with the numerical result only for r > 2a,
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FIG. 3. Radial profile of the concentration field ρ(x,t) obtained
from simulations at time t = 5 × 104τD as a function of r/a for
different resolutions compared with the theoretical prediction (A2)
(solid lines). Inset: the same quantity as a function of the resolution-
independent coordinate r/R. Parameters: D = 10−2, β = 10−3.
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FIG. 4. Relative error on the uptake rates depending on the
position of the particle within the lattice unit. We vary the distance
x from a chosen grid point, along three different paths (shown in
the inset) of size h, from bottom to top: side of the grid unit (blue,
h = δx), face diagonal (green, h = √

2δx), and cube diagonal (red,
h = √

3δx). On the y axis we show the discrepancy between the
off-grid uptake rate κ and the one measured on a grid point κg . Along
each path, the discrepancy is maximal at the farthest position from
the grid. Simulations refer to the resolution M = 64.

and therefore the accuracy of the method increases with the
resolution, as shown in the inset of Fig. 3. This, as we will see
in the next section, has some consequences on the ability of the
method to resolve the diffusive interactions of close particles.

Finally, in Fig. 4, we assess possible systematic errors
coming from varying the position of the particle in the grid,
i.e., errors due to the use of the regularized δ function (2).
We measured the relative error on the uptake rate varying
the position of the particle along the side δx of a lattice unit,
along the face diagonal and along the cube diagonal (see the
inset). The largest variation observed was less than 1% for a
regularization on n3 = 64 grid points. Although it is not shown
here, we also checked that such variation decreases with the
resolution (down to 0.3% for M = 256).

III. CONFIGURATIONS WITH MULTIPLE ABSORBERS

In this section, we consider N static absorbing particles,
arranged in configurations of increasing complexity from
regular to random, with the aim of testing the reliability and
precision of our method. For the sake of simplicity, we discuss
only cases in which all particles have the same radius, i.e.,
βi = β in Eq. (1). All simulations are initialized with a uniform
scalar field, ρ(x,0) = ρ0 = 1. The asymptotic uptake rates are
evaluated as discussed in Sec. II A by fitting κ(t) with (6) on
each particle. Indeed, it can be shown that the functional form
(6) holds also in the case of multiple sinks [11,12].

We compare the numerically obtained rates with those
obtained from a numerical multipole expansion algorithm [15].
When available, we also compare our results with analytical
exact or approximate expressions. The main aim of this study
is the validation of our method in resolving the diffusive
interaction, quantified by the Sherwood number Sh defined
as the total absorption rate normalized with that of N isolated
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FIG. 5. Sh as a function of the distance d between two spherical
absorbers of radius R, varied as in the legend. Solid curves represent
the exact result (9). The gray shaded regions highlight the range
of distances where the numerically obtained Sh becomes sensibly
different from the exact value; see the text for discussion. The
simulations have been performed with M3 = 643 grid points.

absorbers,

Sh = κtot

Nκs

. (8)

In the final subsection, we shall consider the case of a single
absorber in the presence of a linear shear flow and study the
Sherwood number as a function of the Peclet number, quanti-
fying the ratio between advective over diffusive transport.

A. Pairs of absorbers (N = 2)

The case of two spherical absorbers of radius R separated
by a distance d is one of the few examples of the diffusive
interaction problem that can be solved exactly. After choosing
bi-spherical coordinates, the Laplace equation becomes sepa-
rable [38] and the total absorption rate depends on the relative
distance x = d/2R as [50,51]

Sh =
√

x2 − 1
∞∑

n=0

2

1 + (x + √
x2 − 1)2n+1

. (9)

In the limit of well-separated absorbers, x → ∞, Eq. (9) yields
the noninteracting result Sh = 1 (i.e., both spheres absorb the
nutrient at the Smoluchowski rate as if they were isolated).
Notice that, already for x � 2 the first correction given by the
monopole contribution,

Sh = 2x

2x + 1
= d

d + R
, (10)

is a very good approximation of (9). In the limit of two spheres
in contact, x = 1, Eq. (9) gives the maximum interference,
with Sh = ln(2).

In Fig. 5, we show the numerically computed Sherwood
number as a function of the pair distance d for different
choices of the particle effective radius R at fixed resolution.
The numerical results are directly compared with the exact
value obtained from (9). A very good agreement between
numerical and theoretical values is observed for distances
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FIG. 6. Sh for configurations of N equidistant absorbers as a
function of the dimensionless distance x = d/2R for N = 2,3,4
as in the legend. Filled symbols are the results from the numerical
simulations, and open symbols are the exact results obtained with the
method of Ref. [15]. Lines represent the monopole approximation
Eq. (12). The inset shows the relative error with respect to the exact
solutions. The vertical dashed line is positioned at xm = dm/2R,
marking the condition for well-resolved simulations. On the left of the
threshold line the error rises to 4–8 %, while for the other distances it
is always close to 1%. The resolution used is M = 128.

larger than dm ≈ a = (n/2)δx, and about 1/10–1/8 smaller
than the domain size L = 2π .

The discrepancies at small distances are due to the fact that
the method does not resolve the particle surface: the numerical
radius, a, imposed by the regularized δ function turns out
to be the limiting distance for resolving the pair diffusive
interactions (see also Fig. 3 and related discussion), regardless
of the effective radius of the particles. To reduce dm the only
possibility is thus to increase the resolution.

The large-distance discrepancies are due to the periodicity
of the simulation domain. Since the diffusive interactions are
long-ranged [they decay with the inverse of the distance from
the absorbers; see Eq. (A2)], when d increases the particles
start to interact not only with each other but also with their
periodic images, leading to an increase of the total uptake
rate (i.e., Sh becomes larger than predicted for a pair of
absorbers at the same distance in infinite space). This effect
tends to increase with the effective radius R of the particle
as the diffusive interaction increases with R [see Eq. (A2)].
We emphasize that this effect cannot be modified by changing
the resolution, but it requires working with different boundary
conditions.

Summarizing, the above results show that provided the
particles are at distances (n/2)δx = dm < d < dM ≈ L/10 −
L/8, the numerical method works quite well. Figure 6 shows Sh
as a function of the rescaled distance x = d/2R together with
the exact result and the monopole approximation. As is clear
from the inset, in the whole range of x the numerical values
are within 2% from the exact result with larger deviations,
∼4%, when x → 1 corresponding to distances d ≈ dm. In the
following, we shall exploit these results when studying more
complex arrangements of absorbing particles, making sure that
the particles stay at distances within the range of scales for
which the method works well.

023301-5



SOZZA, PIAZZA, CENCINI, DE LILLO, AND BOFFETTA PHYSICAL REVIEW E 97, 023301 (2018)

B. Regular triangles (N = 3) and tetrahedra (N = 4)

We now consider regular arrangements of N = 3 and 4
particles at varying distances. From the theoretical side, the
monopole expression (10) can be easily extended to the case
of N > 2 absorbers. Within the monopole approximation, one
can write the set of linear equations for the uptake rate κi of
the ith absorber [11,12],

κi = κi
s −

N∑
j �=i

εij κj , i = 1, . . . ,N, (11)

where εij = Ri/dij , Ri is the radius of the ith sphere, dij is the
distance between the ith and j th sink, and κi

s = 4πDRiρ∞.
The case considered here is Ri = R and dij = d for N = 3,4.
In this limit, the total Sherwood number, in the monopole
approximation, is given by (x = d/2R)

Sh = 2x

2x + (N − 1)
. (12)

The numerical results are shown in Fig. 6, together with the
monopole expression (12) and the exact results computed by
using the approach described in Ref. [15]. The limit x = 1
corresponds to the minimal distance at which the spheres are
at contact and therefore to the maximum diffusive interaction.
From a numerical standpoint, with our choice of β, this
limit corresponds to d ≈ dm. The discrepancy between the
numerical simulations and the exact results is maximal here,
between 4% and 8% (see the inset), increasing with N as
intuitively expected. At larger distances, the exact values are
recovered within �2%. It is remarkable that the interaction
is still observed for x � 10, as a consequence of the long-
range nature of the diffusive interactions. Notice that, to
reach x = 10 without violating the constraint imposed by the
periodic boundary conditions (cf. Fig. 5), we have varied x also
changing the effective radius. We finally remark that as soon
as x > 2, the monopole approximation practically coincides
with the exact result.

C. Deformed triangles N = 3

We considered also the case of three spheres of radius R at
the vertices of irregular triangles, as sketched in the inset of the
top panel in Fig. 7. A practical way to construct the triangle
is the following: We fix the distance between particles 1 and 2
to be d12 = Xdm with X > 1. Let us denote with θ the angle
between the segments 12 and 13. We keep this angle fixed
and vary the distance d13 = d, requiring dij � dm for i �= j =
1,2,3, which implies a minimal angle θc = arcsin(1/X). Here
we fix X = 5.5 so that θc ∼ 14.35. In the simulations, we used
θ = 15◦,20◦,30◦,60◦ and varied d in the range ∈ [2R,20R].
As for the parameters of the simulation, we fix D = β = 0.01
in such a way that the radius of the spheres R = 0.036.

The solution of such configurations in the monopole ap-
proximation using Eq. (11) is given by

Sh = 1

3
+ 2

3

(A − 1)(B − 1)(C − 1)

A2 + B2 + C2 − 2ABC − 1
, (13)

where A = R/d12 with d12 fixed, B = R/d13, and C = R/d23

with d23 =
√

d2
12 + d2

13 − 2d12d23 cos θ .

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 1  2  3  4  5  6  7  8  9  10
ΔS

h/
S

h e
xa

ct

d13/(2R)

15 °
20 °
30 °
60 °

FIG. 7. Top: Sh for different configurations of deformed triangles
with θ = 15◦,20◦,30◦,60◦ as a function of the distance d13 normalized
by the sphere diameter 2R. The minimum of Sh corresponds to
the configuration of minimal distance d23 (filled symbols from the
numerical simulations, open symbols obtained with the method of
Ref. [15]). Inset: sketch of the deformed triangles. Bottom: relative
error of the simulations with respect to the exact results obtained
with the method of Ref. [15]. The dashed line represents the critical
distance xm = dm/(2R) below which the numerical accuracy is
decreased as discussed in Sec. III A.

In Fig. 7 we plot the total Sherwood number of the triadic
system as a function of the distance d13 normalized by the
diameter of the absorber 2R. Our simulations are compared
with the exact results obtained following the method of
Ref. [15]. We also compare the results with the monopole
approximation (13). The minimal uptake is obtained in the
configuration with minimum distance d23, which maximizes
the diffusive interactions. As shown in bottom panel, the error
is within 2% but for configurations with d13 ≈ dm, as expected
from previous discussions. We conclude by noticing that when
particle 3 is moved far away from the pair, we recover the
asymptote (not shown) given by the uptake of a single sphere
and the contribution of the pair alone, which with our choice
is Sh � 0.94.

D. Random spherical cluster

In this section, we consider the case of a cluster of absorbers.
One important motivation comes from biology in the case of
colonies of micro-organisms. In this case, one is interested in
understanding how diffusive interactions, which cause nutrient
shielding for cells in the cluster interior, deplete the growth of
the colony [14].
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FIG. 8. Sketch of the cluster configurations: (a) spherical cluster;
(b) spherical shell cluster. The graphs also show the potential used to
develop the effective-medium approximation.

Specifically, we consider a spherical cluster of absorbers,
i.e., a sphere of radius Rs , centered at the origin, comprising
N spherical absorbers, with the same radius R, randomly
arranged in its interior avoiding geometrical overlaps [see
Fig. 8 (a)]. In this case, it is possible to have an analytical
estimation of the nutrient uptake by introducing an effective-
medium approximation [14].

The basic idea of the method is to introduce an effective con-
centration field ψ(x,t) = 〈ρ(x,t)〉, where the angular brackets
denote an ensemble average over the possible random position
of the absorbing particles. By averaging both sides of Eq. (1)
and assuming stationarity, one has

D∇2ψ =
〈

N∑
i=1

βiρ(x)δ(x − X i)

〉

�
∫

χ (x − x′)ψ(x′)dx′, (14)

where χ (x) is a linear-response function describing the defor-
mation of the concentration field induced by the absorption
[14]. The linear-response approximation is only valid for
sufficiently small concentration field deformations (dilute clus-
ters) and away from the cluster edges. Fourier-transforming
Eq. (14), one obtains the equation −Dq2ψ̂(q) = χ̂ (q)ψ̂(q).
Since, on average, the cells are isotropically distributed, χ (q)
can only depend on q = |q|. Expanding χ̂ around q = 0
and truncating at zeroth order, i.e., χ̂ (0) = k, provides the
desired mean-field approximation. Hence the configurationally
averaged nutrient concentration obeys the equation D∇2ψ −
kψ = 0 valid within the sphere of radius Rs delimiting the
cluster, outside D∇2ψ = 0; this is merely the equation we
already solved to determine the calibrating function (7) (see
Appendix B). In the above expression, k represents an effective
absorption rate within the sphere in the macroscopic descrip-
tion. The truncation at zeroth order works reasonably well for
dilute clusters, and in this limit k = 4πDRN/Vs = 3Dφ/R2,
where φ = NR3/R3

s = N/α3 is the volume fraction (with
α = Rs/R). The cluster is thus approximated as a unique sink
with penetrable walls. We can directly use Eq. (B5) to express
the total uptake rate

κtot = 4πDψ∞

[
Rs − ξ tanh

(
Rs

ξ

)]
, (15)

ξ = √
D/k = R/

√
3φ being the penetration length.

The Sherwood number is defined as Sh = κtot/Nκs , so using
κs = 4πDRψ∞ and replacing N = α3φ, from (15) we obtain

Sh(φ) = 1

α2φ

[
1 − 1

α
√

3φ
tanh(α

√
3φ)

]
. (16)

Let us now consider the local uptake rate of a cell within the
cluster. We denote with κi the uptake rate of the ith particle,
and we identify its position in the cluster by its distance ri

from the center. We can then introduce the average uptake
rate κ(r) = 〈κi |ri = r〉, where the angular brackets indicate the
ensemble average over different configurations. The Sherwood
number of a cell at a distance r from the center of the cluster
will then be Sh(r) = κ(r)/κs . By definition, the total uptake
rate of the cluster is given by κtot = 〈∑N

i κi〉, while the total
flux absorbed by the particles contained in a smaller sphere of
radius r is given by

4πDr2 dψ

dr
= N

∫ r

0
κ(r ′)p(r ′)dr ′, (17)

where p(r)dr = V −1
s 4πr2θ (Rs − r)dr is the probability to

find a particle at a certain radial position. By taking the
derivative of expression (17), one gets

Sh(r) = ξ 2

ψ∞r2

d

dr

(
r2 d

dr
ψ

)
. (18)

By noting that ξ 2∇2ψ = ψ , it is easy to see that Sh(r) =
ψ(r)/ψ∞, i.e., the local uptake rate κ(r) is proportional to
the averaged concentration profile ψ(r).

We turn now to the numerical results. We considered a
random distribution of particles in a spherical cluster of radius
Rs = L/8 = π/4 so as to minimize the effects due to the
periodic boundary conditions (cf. Fig. 5). As for the absorbers,
we considered N = 20,50,100,150 spheres with effective
radius R ∼ 0.036 so that the (nominal) volume fraction is
in the range φ = 2 × 10−3–10−2, that is, small enough for
the effective-medium approximation to be accurate. Particles
are placed uniformly within the sphere volume, ensuring that
they stay at distances larger than dm ≈ (n/2)δx = (n/M)π
to reduce the errors due to poor resolution of the diffusive
interaction at short distances (cf. Fig. 5). For each N , we
considered from 5 to 10 different configurations to perform
ensemble averages and thus to compare with the effective field
approximation. The same configurations have been used to
compute the exact solution with the method of Ref. [15].

Figure 9 shows the average density profile ψ(r) = 〈ρ(r)〉
compared with the theoretical prediction given by the
effective-medium approximation (B4). The agreement is
remarkably good.

From the simulations, we can extract the uptake rate of each
particle using the standard fitting procedure, which involves
the temporal evolution of the uptake rate at intermediate times
(see Sec. II A). By averaging over particles and different
configurations, one obtains a measure of the total uptake rate
of the cluster. Alternatively, one can extract the uptake rate of
the cluster directly from the concentration field ρ. The radial
profile can be compared with the theoretical prediction (B4) to
extract the parameters of interest. From the inner solution, it is
possible to extrapolate the penetration length ξ shown in the
inset of Fig. 9 with the scaling R/

√
3φ. By fitting the behavior
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FIG. 9. Average radial concentration profile 〈ρ(r)〉 vs r/Rs for
clusters with N = 20,50,100,150 particles as labeled. Numerical data
(symbols) are compared with the effective-medium solution given by
Eq. (B4) (dashed curves). Inset: penetration length ξ obtained from the
fit of the radial profile (filled circles) and theoretical prediction given
by ξ = R/

√
3φ [52] (dashed line). The average is performed over

5–20 independent realizations. The numerical resolution is M = 128.

in the outer region, we have an alternative estimate of the total
Sherwood number.

In Fig. 10 we plot the individual Sherwood number Shi =
κi/κs as a function of the radial distance of particles in the
cluster, compared with the values obtained from the exact
numerical solution. The relative difference is below 8%, as
shown in the inset, and is larger in the interior of the cluster,
due to the accumulation of errors on the concentration density
due to the outer absorbers. In Fig. 10 we also plot the theoretical
prediction (18).

Finally, in Fig. 11 we show that also the total Sherwood
number compares very well with the theoretical prediction (16)
and the exact computation (with error within 10%).
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FIG. 10. Individual Sherwood number Shi = κi/κs for absorbers
in a spherical cluster with N particles as labeled. For each N , 5–20
independent realizations are considered. Filled symbols denote the
numerical results obtained by our numerical method, while empty
symbols are those obtained with the exact numerical computation
described in Ref. [15]. Dashed lines represent the prediction (18).
Inset: relative errors of the uptake computed as the average absolute
distance of the two numerical methods, plotted as a function of the
radial coordinate.
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FIG. 11. Total normalized Sherwood number Sh = κ/Nκs for
the spherical cluster and spherical shell as a function of the volume
fraction φ, averaged over 5–10 configurations and obtained by fitting
the instantaneous uptake (red squares) or fitting the outer solution
of the radial concentration profile (orange circles). Simulations are
compared with exact results calculated using the method described in
Ref. [15] (blue pentagons). Inset: relative error between simulations
and exact results for the spherical cluster (filled circles) and for the
spherical shell (empty circles).

E. Spherical shell cluster

In this section, we study a generalization of the spherical
cluster, considering absorbers with their centers at a fixed
distance from the origin of the sphere of radius Rs [see
Fig. 8(b)]. This kind of configuration is encountered in nature.
For example, Volvox is a colonial alga forming spherical
colonies with a 1 mm diam. It is usually 100 times larger than
the single cell forming it, and it contains up to 5 × 104 cells
organized as a monolayer of flagellated cells on the sphere
surface [53].

Following the same idea used for developing the effective-
medium approximation of a spherical cluster, one can develop
an analytical description for spherical shell clusters. In par-
ticular, after averaging over the absorber configurations and
performing the expansion of the response function, we end up
with the equation

D∇2ψ = k[
(Rs − |r|) + 
(|r| − (Rs − 2R))]ψ, (19)

where 
 is the Heaviside step function. The above equation
must be solved with the boundary condition ψ(r → ∞) = ψ∞
and where again k = 3Dφ/R2 in the dilute limit. Now the
volume fraction is given by φ = NVp/Vs with Vp = 4πR3/3
the volume of the single absorber and Vs the volume of the shell
between Rs − 2R and Rs . The solution of Eq. (19) is detailed
in Appendix C.

Similarly to the previous section, introducing α = Rs/R

and N = φVs/Vp = 2φ(3α2 − 6α + 4), and using the expres-
sion for the total uptake rate Eq. (C2), after some algebra, the
total Sherwood number can be expressed as

Sh(φ) =
1
2 [α(α − 2)

√
3φ − 1/

√
3φ] tanh(2

√
3φ) + 1

φ(3α2 − 6α + 4)[(α − 2)
√

3φ tanh(2
√

3φ) + 1]
.

(20)
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FIG. 12. Time evolution of the uptake rate κ(t) rescaled by the
diffusive uptake rate κs for different values of γ (decreasing from
top to bottom) at fixed particle radius R = 0.05 (β = D = 0.01).
Resolution M = 64.

In Fig. 11, the total Sherwood number is compared with the
theoretical prediction (20); the agreement is good within 10%.
It is also interesting to note that the present configuration in
spherical shell-like geometry enhances the uptake rates per
cell and the total uptake rates of the cluster with respect to
the configurations of bulk spherical clusters. Therefore, it can
represent an efficient strategy to maximize the uptake rate.

IV. SPHERICAL ABSORBER IN A LINEAR SHEAR FLOW

To complete our test of the method in the presence of a flow,
we consider a single (nonrotating) absorber of radius R placed
in the position of zero velocity (so that it does not move) of
a linear shear, u = γ (y,0,0), for which analytical results are
available [3,5]. The nutrient evolves according to Eq. (1) with
the addition of the advection term:

∂tρ + u · ∇ρ = D∇2ρ − ρ

N∑
i

βi f (x − X i). (21)

Analytical results predicts that for small Peclet numbers [54],
Pe = γR2/D, the Sherwood number behaves as [3,49]

Sh ≈ 1 + 0.26 Pe1/2. (22)

Before presenting the results of simulations of Eq. (21), we
discuss the relevant scales for well-resolving the competition
between shear and diffusion. Shear and diffusion balance at a
scale �γ ∼ √

D/γ , diverging for γ → 0. Stationarity (in the
infinite volume) is reached when the diffusive front becomes
comparable with the scale �γ , i.e., for times τγ ∼ �2

γ /D = γ −1,
also diverging for γ → 0. Thus �γ should be much smaller
than the simulation box L, otherwise the effect of shear starts
to be effective over time scales for which the absorber is also
interacting with its periodic images. The requirement �γ � L

implies a constraint on the smallest shear rate that can be used,
i.e., γ � D/L2. Moreover, since we are interested in testing
the prediction (22) for Pe = γR2/D � 1, we end up with the
requirements D/L2 � γ � D/R2, which can be reexpressed
as R2/D = τd � τγ � τL = L2/D and R � �γ � L in the
time and scale domain, respectively. The limitation on the
smallest value of γ is well evident from Fig. 12, where we
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FIG. 13. Shear contribution to the Sherwood number Sh as a
function of Peclet number Pe for numerical simulations at two
different resolutions: M = 64 (filled symbols) and M = 128 (empty
symbols). The line represents the theoretical behavior (22). The Peclet
number Pe is changed by fixing the shear rate γ and varying the
radius R.

show the time evolution of the uptake rate, κ(t), at varying γ

when D and R are fixed. For time t � τγ , κ(t) is essentially
indistinguishable from that obtained in the diffusive case (γ =
0). For γ � 0.01, τγ is comparable with the time at which
the decay induced by the absorber periodic images becomes
effective. Figure 12 also shows that, due to the shear, the
time behavior of the uptake rate is quite different from the
Smoluchowski (diffusive) result, Eq. (6). As a consequence,
we cannot exploit (6) to fit the rate, as was previously done.
Without a theoretical prediction for κ(t), we can extract the
(infinite volume) uptake rate constant using Eq. (5). Assuming
a constant uptake rate κ , the mean concentration should decay
linearly in time as C(t) = C0 − (κ/V )t with V = L3 = (2π )3.
The above functional form should be fitted in the time interval
τγ < t < τL, when the disturbance induced by the shear is
well-developed and (quasi)stationary. To test the prediction
(22), we proceed as follows. Given the diffusion coefficient D,
we fixed the shear rateγ at three representative values, such that
�γ is well resolved by the numerical grid and �γ � L. Then we
explored different values of the Peclet number Pe by varying
the particle radius R (viz., the absorption rate β), but enforcing
the constraint �γ � R to have a small Pe. We performed two
series of simulations using grid resolution M = 64,128. For
each series of simulations, we explored a sufficiently wide
range of values of the Peclet number, fitting the uptake rate
constant as described above. As shown in Fig. 13, the excess
Sherwood number, Sh − 1, as a function of Pe compares very
well with (22).

V. CONCLUSIONS

We presented a numerical method for computing the nu-
trient uptake rate by small spherical particles immersed in
a concentration field, in the diffusion-limited regime. The
method, inspired by the force-coupling method, represents
each particle as an effective sink of concentration and can
in principle be used in the presence of a generic underlying
flow, motile particles, and source terms for the concentration
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field. Moreover, a more complex reaction scheme can be easily
implemented to mimic partial or saturable absorption.

By comparing the numerical results with exact results
obtained from a multipole expansion method based on re-
expansion formulas for solid harmonics, we have shown that
the method, implemented here on a pseudospectral solver, is
able to correctly reproduce the diffusive interactions among
competing absorbers arranged in geometrical configurations of
increasing complexity. As was discussed, the main limitation
of the method resides in the possibility to resolve diffusive
interactions at small distances, but this can be cured by
increasing the resolution. Another limitation pertains to the
large distances, but this is only due to the periodicity of the
simulation domain and thus it does not concern the method
itself.

The main advantages of the method are the scalability with
the number of absorbers and the possibility to include the
presence of an arbitrary flow, for which we show a benchmark
in the case of a linear shear. These properties make our
numerical method ideal for the study of problems possibly
involving complex, turbulent flows, such as the efficiency of
nutrient uptake by micro-organisms in the ocean. In future
investigations, we plan to implement the presented method to
particles transported by turbulent flows, backreacting on it and
possibly equipped with self-propulsion.
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APPENDIX A: SMOLUCHOWSKI FORMULA

The problem of diffusion-limited reaction was first studied
by Smoluchowski [10] and then applied to the heat flow into
a sphere with a constant temperature [55]. In the ecology of
phytoplankton, the model was first introduced by Osborn [56].
In the absence of a flow, the uptake by a single spherical cell
is controlled by the diffusion equation

∂tρ = D∇2ρ, (A1)

where D is the diffusivity, and the boundary conditions (for a
perfect absorber) are ρ = 0 at r = R and ρ = ρ∞ as r → ∞.

Using the Laplace transform, Eq. (A1) gives the solution

ρ(r,t) = ρ∞

[
1 − R

r
Erfc

(
r − R

2
√

Dt

)]
. (A2)

The flux per unit area is J (r,t) = −D∂rρ. Integrated over the
solid angle at r = R, this gives the rate of nutrient flux entering
into the cell surface, i.e., κ(t) = J (R,t) 4πR2. Therefore, from
(A2), the uptake rate at the sphere is

κ(t) = 4πDRρ∞

(
1 + R√

πDt

)
. (A3)

In the limit of long times t → ∞, κ(t) reduces to the
Smoluchowski constant rate κs .

APPENDIX B: THE MEAN-FIELD THEORY OF
ABSORPTION BY A SPHERICAL POTENTIAL

Here we aim at solving the following equation:

∇2ϕ − k
(b − |r|)ϕ = 0, (B1)

with the boundary condition ϕ(|r| → ∞) = ϕ∞, and where 


is the Heaviside function. The solution we are interested in is
spherically symmetric, so, denoting r = |r|, the equation we
actually need to solve is

ϕ′′ + 2ϕ′/r − ϕ/ξ 2 = 0, (B2)

where ξ = √
D/k has dimensions of a length, and the prime

denotes the derivative with respect to r . The general solution
is [57]

ϕ =
{

C1ξ sinh(r/ξ )+C2ξ cosh(r/ξ )
r

, r � b,
C3
r

+ ϕ∞, r � b .
(B3)

To avoid a singular solution in r = 0, we impose C2 = 0,
while C1 and C3 can be fixed imposing continuity of ϕ and
its derivative in r = b. The final result is

ϕ(r) =
{

ϕ∞ξ

cosh(b/ξ )
sinh(r/ξ )

r
, r � b,

ϕ∞
(
1 − b−ξ tanh(b/ξ )

r

)
, r � b.

(B4)

For the results presented in the main text, we need to compute
the flux on the surface of the sphere of radius b, which is simply
obtained as

κ = 4πDr2 ∂ϕ

∂r

∣∣∣∣
r=b

= 4πDϕ∞[b − ξ tanh(b/ξ )]. (B5)

APPENDIX C: THE ABSORPTION BY A SPHERICAL
SHELL POTENTIAL

Here we aim at solving Eq. (19). Similarly to the case
discussed in Appendix B [see Eq. (B3)], we have three
regions with different solutions. In the interior of the shell, for
r < Rs − 2R, we have the solution ψI = a1 + b1ξ/r , clearly
b1 = 0 due to the divergence at r = 0. In the region Rs − 2R <

r < Rs , the solution is ψII = (ξ/r)(a2e
r/ξ + b2e

−r/ξ ). In the
outer region, r > Rs , the solution is ψIII = a3 + b3ξ/r .

The boundary condition at infinity implies that a3 = ψ∞.
Imposing the continuity of the solution and its derivative at
r = Rs − 2R and r = Rs , we obtain the remaining unknown
constants. The final solution is

ψ(x)

ψ∞
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

X1 sinh (X)+cosh (X)
(I),

1

x

X1 cosh (x−X1) + sinh (x−X1)

X1 sinh (X)+cosh (X)
(II),

1− 1

x

(X1X2−1) tanh (X)+X

X1 tanh (X)+1
(III),

(C1)

where x = r/ξ , X = 2R/ξ , X1 = (Rs − 2R)/ξ , X2 = Rs/ξ ,
and the three regions correspond to I = [0,X1], II = [X1,X2],
and III = [X2,∞).

As before, the total uptake rate at r = Rs is given by

κtot = 4πDr2 ∂ψ

∂r

∣∣∣∣
r=Rs

= 4πDb3ξ, (C2)
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where b3 can be read from the term proportional to 1/x in
(C1) III.

APPENDIX D: EXACT SOLUTION OF THE LAPLACE
BOUNDARY PROBLEM WITH MANY DISCONNECTED

SPHERICAL BOUNDARIES THROUGH ADDITION
THEOREMS FOR SOLID HARMONICS

In this appendix, we sketch the mathematical reasoning
behind the exact solution of the Laplace equation with many
disconnected sinks. For more details, see Ref. [15].

Let us pose the general problem of computing the stationary
flux of a ligand-nutrient field toward a stationary distribution
of N spherical sinks, i.e., perfectly absorbing spheres �α

of radius Rα (α = 1,2, . . . ,N). Let ρB denote the (constant)
bulk density of the nutrient field far from the sinks. The
stationary normalized density u(r) = ρ(r)/ρB is the solution
of the following boundary problem:

�2u = 0, (D1a)

u|∂�α
= 0 for α = 1,2, . . . ,N, (D1b)

lim
r→∞ u = 1. (D1c)

Once the Laplace equation is solved (see below for details),
the intake rate can be computed as the total flux into the sink
system, that is,

k = D

N∑
α=1

∫
∂�α

∂u

∂rα

∣∣∣∣
∂�α

dS. (D2)

To solve the Laplace equation in the assigned manifold, we
introduce as many sets of spherical coordinate systems as
there are spherical boundaries. The solution can then be
written formally as an expansion in a series of irregular solid
harmonics, namely

u = 1 +
N∑

α=1

uα = 1 +
N∑

α=1

∞∑
n=0

n∑
m=−n

Bα
mnu

−
mn(rα)

= 1 +
N∑

α=1

∞∑
n=0

n∑
m=−n

Bα
mn

(
rα

Rα

)−n−1

P m
n (cos θα)eimφα ,

(D3)

where P m
n are associated Legendre functions and rα is the

radial coordinate associated with the spherical system, which
is centered on the αth sphere. The coefficients Bα

mn should be
determined by imposing the boundary conditions (D1b). To
do so, we can use known addition theorems for the spherical
harmonics [38] to express the solution (D3) in all the N

different reference frames centered at each sphere. As a result,
we obtain an infinite-dimensional system of linear equations
for the unknown coefficients Bα

mn,

Bα
gq +

(
δ(g,q),(0,0) +

∞∑
n=0

n∑
m=−n

N∑
β=1,β �=α

Bβ
mnW

(α,β,g,q)
m,n

)
= 0

(D4)
for all α = 1,2, . . . ,N , q = 1,2, . . . ∞, and g = −q, . . . ,q,
with

W (α,β,g,q)
m,n = (−1)q+g (n − m + q + g)!

(n − m)!(q + g)!

×
(

R
q
αRn+1

β

L
n+q+1
βα

)
Zm−g,n+q (Lβα), (D5)

where Lβα is the vector that connects the centers of �β and
�α in the direction �β → �α , and Zm� is defined as

Zm�(θ,φ) = P m
� (cos θ )eimφ. (D6)

To solve the above system, one needs to truncate the sum on
n in Eq. (D4) by including a finite number of multipoles, Nt ,
which should be chosen so as to attain the desired accuracy.
Recalling the definition (D2), the intake rate k can be computed
explicitly. This gives

k ≡
N∑

α=1

kα = −
N∑

α=1

kSα
Bα

00, (D7)

where kSα
= 4πDRα is the Smoluchowski rate constant for

an isolated sphere of encounter radius Rα (= radius of the
absorber + radius of the ligand-nutrient). In the simplified case
of equal sinks, Rα = a ∀α, this expression simplifies to

k

NkS

= − 1

N

N∑
α=1

Bα
00. (D8)
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