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Particles suspended in a fluid exert feedback forces that can significantly impact the flow,

altering the turbulent drag and velocity fluctuations. We study flow modulation induced

by small spherical particles heavier than the carrier fluid in the framework of an Eulerian

two-way coupled model, where particles are represented by a continuum density transported

by a compressible velocity field, exchanging momentum with the fluid phase. We implement

the model in direct numerical simulations of the turbulent Kolmogorov flow, a simplified

setting allowing for studying the momentum balance and the turbulent drag in the absence

of boundaries. We show that the amplitude of the mean flow and the turbulence intensity

are reduced by increasing particle mass loading with the consequent enhancement of the

friction coefficient. Surprisingly, turbulence suppression is stronger for particles of smaller

inertia. We understand such a result by mapping the equations for dusty flow, in the limit

of vanishing inertia, to a Newtonian flow with an effective forcing reduced by the increase in

fluid density due to the presence of particles. We also discuss the negative feedback produced

by turbophoresis which mitigates the effects of particles, especially with larger inertia, on

the turbulent flow.
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I. INTRODUCTION

Dust and particulate in turbulent flows are common to many natural environments [1], from

aerosol in clouds formation [2, 3], particle-driven gravity currents [4], sediment transport in rivers

[5], and volcanic eruptions [6], to planetesimals and proto-planets formation [7–9]. They are also

relevant to many industrial processes dealing with pipe flows and open channel flows [10], as well

as in fluidization processes [11].

Dispersed particles are not only transported by the flow, but they exert forces (e.g. drag forces)

on the fluid that, depending on the mass loading, can modify the flow itself. The coupled system

made of the carrier fluid and the particles is generally referred to as particle-laden flow [12]. The

interactions between the particles and the fluid can significantly alter the flow both at large and

small scales. In particular, heavy particles can attenuate or enhance turbulence depending on their

size with respect to the viscous scale [12, 13]. In general, smaller [14, 15] and settling [16–18]

particles lead to turbulence attenuation. Less clear is the effect on turbulent drag: experiments in

channel flows did not find measurable changes on the mean flow [14, 15], while simulations reported

drag reduction in a channel flow [19] and drag enhancement in an unstably stratified boundary

layer [20], moreover the effects depend sensitively on many factors including particle shape, size

and volume/mass fraction [21, 22]. At small scales, effects of particles on the carrier fluid have

been observed in the spectral distribution of the fluid kinetic energy [23–25].

Turbulence in multiphase flows constitutes a formidable challenge even in the dilute regime,

where the fluid-particle interactions causes also the formation of strong inhomogeneities in parti-

cles’ spatial distribution [12]. Fractal clustering of (one-way coupled) particles has been observed

at small scales in chaotic flows [26, 27] and within the inertial and dissipative range of turbu-

lence [28]. In inhomogeneous turbulent flows large-scale clustering of particle occurs because of

the turbophoresis, that is, the migration of the particles in regions of lower turbulence intensity

[29, 30]. Due to its importance for applications, turbophoresis is usually studied in the presence

of boundaries, such as in turbulent boundary layers [31–35], pipe flows [36] and channel flows

[37]. Nevertheless, turbophoresis does not require the presence of boundaries, but just the spatial

modulation of the turbulent intensity, and has been observed also in the absence of walls [38–40].

In this paper, we investigate the effects of mass loading and particle inertia on turbulent drag

and turbophoresis in bulk flows without material boundaries, in the regime of low volume frac-

tion. To this aim we have performed numerical simulations of a two-way coupled fully Eulerian

model, first introduced by Saffman [41], for a dilute suspension of inertial particles in a turbu-
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lent Kolmogorov flow. The Kolmogorov flow is obtained by forcing the Navier-Stokes equations

with a sinusoidal force, and was originally proposed by Kolmogorov as a model to understand the

transition to turbulence [42]. It represents a paradigm of inhomogeneous turbulent flows without

boundaries, because the local intensity of turbulent fluctuations is spatially modulated by the pres-

ence of a sinusoidal mean velocity profile. Owing to the spatial variation of the turbulent intensity,

the Kolmogorov flow provides an ideal setup to study the turbophoretic effect in the absence of

boundaries [39, 43]. Furthermore, the presence of a mean flow allows us to define a drag (or friction)

coefficient, as the ratio between the work made by the force and the kinetic energy carried by the

mean flow [44]. In this regard, the Kolmogorov flow can be thought of as a simplified channel flow

without boundaries, and it has been exploited for numerical studies of the bulk processes of drag

reduction in dilute polymer solutions [45], drag enhancement in dilute solutions of inextensible

rods [46] and in spatially fixed networks of rigid fibers [47].

We find that particles modify the bulk properties of the flow by reducing the amplitude of the

mean flow and the intensity of turbulent fluctuations, at increasing the mass loading. The reduced

mean flow at fixed forcing amplitude implies an increase of the drag coefficient. Surprisingly, we

find that this effect is larger for particles with smaller inertia. Turbulence reduction at increasing

mass loading also results in a reduction of the turbophoretic effect, in agreement with previous

findings in channel flows [48].

The paper is organized as follows. In Sec. II, we describe the Eulerian model for a dusty fluid. In

Sec. III, we detail the numerical implementation of the model and report the parameters used in the

simulations. In Sec. IV, we present the main results of our study. Finally, in Sec. V we summarize

the results and discuss the perspectives of our study. In the Appendix we benchmark the model

against previous Lagrangian simulations (in the passive case) and against different regularization

scheme for the particle velocity and density fields.

II. EULERIAN MODEL FOR A DUSTY FLUID

Theoretical and numerical studies of particle laden flows make use of different models to describe

the interactions between particles and fluid [12], based either on Eulerian-Lagrangian approaches

(see, e.g., Refs. [23, 25]) or Eulerian two-phase models (e.g., Refs. [24, 41]). Here we adopt an

Eulerian model with two-way coupling appropriate for suspensions with negligible volume fraction,

which was first introduced by Saffman to study the linear stability of a dusty gas [41].

The Saffman model has been used in astrophysical studies, and in particular to describe the
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dynamics of protoplanetary disks [8]. Within this context, the coupling between the gas and particle

phases in a rotating Keplerian disk leads to the streaming instability [49] which is one hypothesis

for planetesimal formation, overcoming the small scale bottleneck of self-gravitation [50].

We consider a dilute mono-disperse suspension of small, heavy, spherical particles with density

ρp and size a transported in a Newtonian fluid with density ρf and viscosity µ. The particle density

is assumed to be much larger than fluid one, ρp � ρf . In real systems, the density ratio ρp/ρf

can easily reach order 103 for grains or water droplets in air and order 10 for metallic particles in

water. We assume the particle size much smaller than the viscous scale of the flow, a� η, where

η = (ν3/ε)1/4 is the Kolmogorov viscous length and ε the fluid kinetic energy dissipation rate.

This assumption implies that the particle Reynolds number is small and we further assume that

the volume fraction of the particles Φv = Npvp/V , defined in terms of the volume of each particle

vp ∝ a3 and the number of particles Np contained in the total volume V , is negligible small. Even

for very small volume fraction, the mass loading Φm = Φvρp/ρf can be of order unity because of

the large density ratio. As an example, for a dilute suspension of droplets of water in air with

Φv ≈ 10−3 one has Φm ≈ 1.

Because of the vanishing volume fraction of the particles, the fluid density field can be assumed

to be constant and, therefore, the velocity field of the fluid phase u(x, t) incompressible (∇·u = 0).

The solid phase is described by the particles’ velocity field v(x, t) and the normalized number

density field θ(x, t) = n(x, t)/(Np/V ), where n(x, t) is the local number of particles per unit

volume. The normalization gives 〈θ〉 = 1. Here and in the following, the brackets 〈[·]〉 denote the

average over the whole volume V .

For small volume fractions (Φv < 10−3) the dynamics of the particle-laden flow can be described

by a two-way coupling, which takes into account the interactions between individual particles and

the surrounding flow, but neglects the interactions between particles (collisions and friction) and

the particle-fluid-particle interactions (fluid streamlines compressed between particles) [51]. In the

two-way coupling regime, the exchange of momentum between the two phases can no longer be

neglected [12]. For small heavy particles, such an exchange is mainly mediated by the viscous drag

force fdrag = γ(v − u), which is proportional to the velocity difference between particle and fluid

velocity, γ being the viscous drag coefficient.

Assuming that the interactions conserve the total momentum, Saffman [41] derived the following
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coupled equations for the two phases:

∂tu + u ·∇u = −∇p

ρf
+ ν∇2u + fext +

Φm

τ
θ(v − u) (1)

∂tv + v ·∇v = −v − u

τ
(2)

∂tθ + ∇·(vθ) = 0 , (3)

where p is the pressure, fext is the external force, which sustains the flow, ν = µ/ρf is the kinematic

viscosity, and τ = mp/γ is the particle relaxation time, defined as the ratio between the particle

mass mp = ρpvp and its viscous drag coefficient γ. In the case of a spherical particles of radius

a one has mp = (4/3)πa3ρp and γ = 6πµa, which gives the Stokes time τ = (2/9)a2ρp/ρfν.

Normalizing the latter with the Kolmogorov viscous time, τη = (ν/ε)1/2, we obtain the Stokes

number St = τ/τη, which provides a non-dimensional measure of particle inertia in responding to

the fluid velocity fluctuations.

It is important to remark that the validity of the model (1-3) is limited to small Stokes numbers

St < 1. In a Lagrangian description, nearby particles with large St may exhibit very different

velocities [52], a phenomenon known under the name of caustics formation [53] and sling effect

[54]. Within the Eulerian framework, caustics would imply a multi-valued particle velocity field,

breaking the validity of the continuum description. The rate of caustic formation increases with St

[55], therefore the Eulerian description for the particles is valid only for sufficiently small inertia,

when the effect of caustics is negligible. A direct comparison of the model (1-3) (for Φm = 0) with

Lagrangian simulations has shown that the Eulerian and Lagrangian approaches are equivalent for

St < 1 [56]. Moreover, in Eq. (2) we have neglected the gravity acceleration g on the particles to

avoid additional effects induced by sedimentation.

Noticing that in the case of spherical particles the Stokes number can be written as St =

(2/9)(ρp/ρf )(a/η)2, it is easy to realize that the condition St < 1 for the validity of the Eulerian

description can be fulfilled only by very small particles with a� η. In order to obtain finite values

for the parameters τ and Φm, the limit of vanishing radius a → 0 can be consistently achieved in

the model (1-3) by assuming the scaling ρp/ρf ∼ a−2 for the density ratio and Np ∼ a−1 for total

number of particles. These scalings ensure the volume fraction to vanish as Φv ∼ a2.

We also remark that the two-way coupling used in the above model does not preserve the total

kinetic energy of the fluid and particle phases. Defining the kinetic energy per unit volume as

E = ρf (〈|u|2〉+ Φm〈θ|v|2〉)/2 the energy balance of the model is:

dE

dt
= ρf

[
−ν〈(∇u)2〉 − Φm

τ
〈θ|v − u|2〉+ 〈fext · u〉

]
, (4)
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which shows that a fraction of the energy injected by the external force is removed by the viscous

drag between the particles and the fluid.

In this paper, as for the external force stirring the fluid, we consider the Kolmogorov force

fext = F cos(Kz)x̂. Under this forcing one has a simple laminar solutions to (1-3) given by θ = 1

and u = v = U0 cos(Kz)x̂ with U0 = F/(νK2). In the absence of particles (Φm = 0), this solution

becomes unstable to transverse large-scale perturbations (for wavenumber smaller than K) when

the Reynolds number Re = U0/(νK) exceeds the critical threshold Rec =
√

2 [57]. Remarkably,

even in the turbulent regime, the Kolmogorov flow maintains a monochromatic mean velocity

profile u = U cos(Kz)x̂ with an amplitude U smaller than the laminar solution U0 (here and in the

following the over-bar [·] denotes the average over time t and over the x and y coordinates). The

presence of a non-vanishing mean velocity profile allows us to define the turbulent drag coefficient

[44] f = F/(KU2), in analogy with channel flows.

In summary, the dimensionless parameters which control the dynamics of the model are the mass

loading Φm = Φvρp/ρf , the Reynolds number Re = U/(νK), defined in terms of the amplitude U

of the turbulent mean profile of the x-component of the velocity, and the Stokes number St = τ/τη.

III. NUMERICAL SIMULATIONS

We performed numerical simulations of Eqs. (1-3) by means of a 2/3 de-aliased pseudo-spectral

solver with second-order Runge-Kutta time marching in a triply periodic cubic domain of side

L = 2π and grid resolution M = 256. Small scale resolution of the fields was ensured by requiring

kmaxη ≥ 2.7 (kmax = M/3). We explored three values of Stokes time τ = (0.10, 0.34, 0.58) and

three values of mass loading Φm = (0.0, 0.4, 1.0), which compose a dataset of nine configurations

in the parameters space. The simulations with Φm = 0 correspond to the case with passive inertial

particles, previously studied in Ref. [39] using a Lagrangian scheme, whose results were used to

benchmark the Eulerian model (see Appendix A 1). We notice that the values of dimensionless

parameters Re and St depends also on the mass loading Φm and are therefore determined a

posteriori in the simulations. The main parameters of our simulations are summarized in Table I.

In each run we let the simulations evolve to reach a statistically stationary state, discarding

transient behaviors. The particles were initialized with a homogeneous density field (θ = 1) and

velocity field equal to the fluid one (v = u). After the transient, we collected 360 profiles and fields,

over a temporal series of 500 eddy turnover time, in order to ensure statistical convergence. The

statistical uncertainties (represented by the error-bars in the figures) have been estimated using the
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Run τ Φm U A u′rms B θ′rms ε τη Re St Rλ

A1 0.10 0.0 0.232 0.020 0.199 6.53× 10−3 0.264 9.3× 10−4 1.04 232 0.10 89

A2 0.10 0.4 0.195 0.016 0.164 4.29× 10−3 0.185 4.8× 10−4 1.44 195 0.07 85

A3 0.10 1.0 0.160 0.012 0.134 2.97× 10−3 0.133 2.7× 10−4 1.93 160 0.05 76

B1 0.34 0.0 0.233 0.047 0.199 6.62× 10−3 0.634 9.3× 10−4 1.04 233 0.33 89

B2 0.34 0.4 0.197 0.039 0.160 4.34× 10−3 0.444 4.2× 10−4 1.54 197 0.22 89

B3 0.34 1.0 0.169 0.030 0.131 3.02× 10−3 0.324 2.4× 10−4 2.06 169 0.17 83

C1 0.58 0.0 0.233 0.061 0.199 6.68× 10−3 0.922 9.3× 10−4 1.04 233 0.56 89

C2 0.58 0.4 0.200 0.048 0.158 4.59× 10−3 0.634 4.0× 10−4 1.058 200 0.37 92

C3 0.58 1.0 0.174 0.038 0.129 3.18× 10−3 0.458 2.2× 10−4 2.12 174 0.27 87

TABLE I. Simulation parameters: Run index, Stokes time τ , mass loading Φm, amplitude of the mean

flow U , amplitude of the modulation of the particle density profile A, Root mean square (RMS) velocity

fluctuations u′rms, amplitude of the modulation of the profile of square velocity fluctuations B, RMS particle

density fluctuations θ′rms, energy dissipation rate ε = ν〈(∇u)2〉, Kolmogorov time τη = (ν/ε)1/2, Reynolds

number Re = U/(Kν), Stokes number St = τ/τη, Taylor-scale Reynolds number Rλ = 〈|u|2〉
√

5/(3νε). In

all runs we used resolution M = 256, kinematic viscosity ν = 10−3, forcing amplitude F = 8× 10−3, forcing

wave-number K = 1.

variations observed by halving the statistics. In order to avoid the development of instabilities due

to strong density gradients, which are unavoidable due to particle clustering, we added a numerical

regularization to Eqs. (2-3). In particular, we considered an additional viscous term νp∇2v and

diffusivity κp∇2θ for the particle velocity and density field, respectively. To reduce the number

of parameters, we fixed νp = κp = ν. To check the robustness of our results with respect to

the regularization scheme, we performed additional simulations with an alternative regularization

based on higher-order Laplacian. In Appendix A 2 we compare the results obtained with the two

methods.

Finally, we observe that in principle the pseudo-spectral scheme does not preserve the positivity

of the density field. Indeed, in low density regions steep gradients and fluctuations of density may

occasionally generate events with negative density. Nonetheless we have checked that, even in the

worst cases corresponding to small Φms and large τs, the fraction of points with negative density

does not exceeds 1− 2%.
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IV. RESULTS

We start discussing the numerical results by showing, in Fig. 1, the two-dimensional sections of

the particle density field θ(x, z), and the longitudinal velocity field ux(x, z) for a given Stokes time

τ = 0.34 and different values of the mass loading Φm. We notice that the density field is organized

in elongated filaments, which are gradually smoothed for increasing mass loading. Moreover, they

seem to be disposed parallel to the isolines of the longitudinal velocity ux, and correlated with

regions of strong gradients of the velocity field, where the space between isolines is narrowed. Also

the fluctuations of the longitudinal velocity ux appear to be suppressed with respect to the intensity

of the mean flow U at increasing mass loading. Already at a qualitative level, these observations

provide a first indication that turbulence in the fluid phase is reduced by the back-reaction of the

solid phase.

Φm=0.0 Φm=0.4 Φm=1.0

 0

 1

 2

 3

θ
(x

,z
)

-2

-1

 0

 1

 2

u
(x

,z
)/

U

FIG. 1. (Color online) Visualization of two-dimensional sections in the plane (x, z) (at fixed y = L/2) of the

particle density field θ (top), and longitudinal velocity field ux (bottom) normalized with the amplitude of

the mean flow U . Simulations refer to τ = 0.34 and Φm as labeled.

Due to the symmetries of the forcing, which depends on the transverse direction z only, we can

define a mean velocity profile u(z) by averaging the velocity field u(x, y, z, t) over the coordinates
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x, y and time t. Alike the forcing, also the mean velocity profile has non-zero component only in

the x-direction: u(z) = (ux(z), 0, 0). Furthermore, we decompose the velocity field as the sum of

the mean velocity profile and the velocity fluctuations: u = u + u′.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 L/2 L

(a)

u_
_ x

(z
)

z

Φm=0.0
Φm=0.4
Φm=1.0

 0.16

 0.18

 0.2

 0.22

 0.24

 0  0.2  0.4  0.6  0.8  1

(b)

U
Φm

τ=0.10
τ=0.34
τ=0.58

FIG. 2. (Color online) Averaged profiles and amplitudes of the longitudinal fluid velocity. (a) Mean velocity

profile ux(z) for different mass loading Φm = (0.0, 0.4, 1.0) and fixed τ = 0.58. (b) Amplitude of the mean

flow U as a function of Φm for different Stokes time as in label.

In Fig. 2a we show the average profiles of the longitudinal velocity ux(z) for τ = 0.58. Similarly

to the case of pure fluid (Φm = 0) [44], we find that the profile of the mean flow is, with a good

approximation, monochromatic [58]:

ux(z) = U cos(Kz) . (5)

As shown in Fig. 2b, the amplitude U of the mean velocity profile decreases at increasing the mass

loading Φm (of about 30% in the case with Φm = 1 and τ = 0.10). Even though the dependence

of U on τ at fixed Φm appears to be milder, Fig. 2b shows that the mean flow is reduced more at

smaller τ . In other words, particles with small inertia seem to affect more the mean flow, which is

somehow counterintuitive.

The effects of the particles at small St can be explained as follows. When the dust is sufficiently

fine, i.e. τ � τη, particles follow the fluid velocity almost like tracers. From Eq. (2), at the first

order in τ one can write v = u− τDtu + o(τ) [26], where Dt = ∂t + u ·∇ represents the material

derivative. At zero order in τ , the particle velocity field remains incompressible and therefore the

particle are homogeneously distributed: θ = 1 +O(τ). Substituting the expansions for v and θ in

Eq. (1), the equation for the fluid velocity at leading order becomes

(1 + Φm)Dtu = −∇p+ ν∇2u + fext . (6)
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FIG. 3. (Color online) Profiles of the mean longitudinal flow ux(z)) (red circles and solid line) and the

square velocity fluctuations |u′|2(z) (blue squares and dashed line), for a simulation of the particle-laden

flow with τ = 0.1, Φm = 1.0 (symbols) and a simulation of a pure fluid with rescaled forcing amplitude

F ′ = F/(1 + Φm) (black lines, data from Ref. [44]).

In other terms the fluid density is increased by the presence of particles. At low Reynolds numbers

such as in the case of linear stability problems, as previously discussed by Saffman [41], the particle-

laden flow is equivalent to a Newtonian fluid with a rescaled viscosity ν ′ = ν/(1+Φm) and therefore

particles have a destabilizing effect. Conversely, at high Reynolds numbers, the viscous term is

negligible in the momentum budget and the factor (1 + Φm) rescales the amplitude of the forcing

f ′ext = fext/(1 + Φm). According to this argument, one expects that at small St and large Re the

main effect of the particles is to cause a reduction of the external forcing and consequently of the

mean flow intensity, therefore increasing the turbulent drag. We have tested this prediction by

comparing the simulation of the particle-laden flow with τ = 0.1 and Φm = 1.0, with a simulation

of a pure fluid (i.e., without particles) and rescaled forcing amplitude: F ′ = F/(1+Φm). As shown

in Fig. 3, the profiles of the mean flow ux(z) and of the velocity fluctuations |u′|2(z) obtained in

the two cases coincide. We will discuss later the consequences of this effect on the turbulent drag.

Particles impact not only on the mean flow, but also on the turbulent fluctuations u′ = u−u. At

increasing mass loading Φm, we observe a reduction of the root mean square (RMS) fluid velocity

fluctuations u′rms = 〈|u′|2〉1/2 (see Fig. 4a). Actually, fluctuations are suppressed more than the

mean flow, as shown by the ratio u′rms/U (inset of Fig. 4a). At fixed Φm, the dependence of u′rms

on τ is weak (as for U) and it is opposite to what observed for U : particles with smaller τ cause

a smaller reduction of u′rms. In the Kolmogorov flow, the intensity of turbulent fluctuations is
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not homogeneous. Turbulence is more intense in the regions where the shear of the mean flow is

maximum, while it is weaker around the maxima of the mean flow [39, 44]. Therefore, the profile

of square velocity fluctuations displays a monochromatic spatial modulation: |u′|2(z) = (u′rms)
2 −

B cos(2Kz). As discussed in Ref. [39] (in the case of vanishing mass loading, Φm = 0) the amplitude

B of the spatial modulation of turbulence intensity is directly related to the turbophoresis. The

values of B measured in our simulations are reported in Table I. Alike u′rms, we find that also B

is strongly reduced at increasing Φm while it weakly depends on τ .

The turbulence attenuation caused by the mass loading reflects into a reduction of the tur-

bophoretic effect. In Fig. 5a we show that the mean particle density profile displays a monochro-

matic modulation θ(z) = 1+A cos(2Kz). Note that the wavelength of the modulation of density is

equal to that of the turbulent intensity and it is half that of the mean flow. For Φm = 0 the profile

obtained is in agreement with the results of the Lagrangian simulations reported in Ref. [39]. The

amplitude A of the spatial modulation of the mean density profile provides a quantitative measure

of the turbophoretic effect. The values of A are reported in Table I and shown in Fig. 5b. We

find that A reduces at increasing the mass loading Φm. This effect is directly connected with

the reduction of the amplitude B of the variations of the turbulent diffusivity at increasing Φm.

Furthermore, the amplitude A increases as a function of St collapsing on a master curve for all the

values of Φm. These results shows that the coupling between the particles and the fluid causes a

reduction of the turbophoresis in the Kolmogorov flow, in agreement with what observed in channel

flows [48].
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FIG. 4. (Color online) (a) RMS fluid velocity fluctuations u′rms as a function of Φm. In the inset velocity

fluctuations are normalized with the mean flow. (b) RMS particle density fluctuations θ′rms as a function of

St.
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FIG. 5. (Color online) (a) Mean particle density profile θ(z) for different values of mass loading Φm =

(0.0, 0.4, 1.0) and fixed Stokes time τ = 0.58. (b) Amplitude A of the spatial modulation of the density

profile θ(z) = 1 +A cos(2Kz), as a function of the Stokes number St for different values of Φm.

In the Kolmogorov flow, the turbophoretic effect can be observed only by long time averages of

the density profiles, but it is not directly visible in the instantaneous density fields. As shown in

Fig. 1, the latter are characterized by filaments of clustered particles. Clustering intensity can be

quantified by decomposing the particle density field as θ = θ+θ′ = 1+A cos(2Kz)+θ′. The values

of the RMS density fluctuations θ′rms are shown in Fig 4b. Similarly to what observed for the

amplitude A of the mean density profile, we find that θ′rms reduces at increasing mass loading Φm.

Again, this is due to the reduction of turbulence at increasing Φm, which results in larger values

for the Kolmogorov times τη and hence reduces the particles Stokes number St = τ/τη. Particle

clustering is therefore suppressed by the mass loading.

The effects of the solid phase on the fluid can be further quantified by inspecting the equation

for the local balance of fluid momentum. By averaging (1) over x, y and t, we obtain the equation

∂zuxuz − ν∂zzux − F cos(Kz)− Φm

τ
θ(vx − ux) = 0 , (7)

for the mean profiles of the turbulent Reynolds stress (uxuz), of the viscous stress (ν∂zux) of the

forcing (F cos(Kz)) and of the momentum exchange with the solid phase (
Φm

τ
θ(vx − ux)). Because

of the monochromatic forcing, we can assume at first approximation a monochromatic profile for

the terms in Eq (7), i.e. besides (5) we assume

uxuz = S sin(Kz), θ(vx − ux) = −X cos(Kz) (8)

where S is the amplitude of the Reynolds stress and X is the amplitude of the momentum exchange.

Following Ref. [44], inserting Eqs. (5) and (8) in the momentum equation (7), yields the following
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momentum budget for the amplitudes divided into Reynolds stress term (filled symbols) and exchange term

(empty symbols), as a function of the mass loading Φm for different values of Stokes times as in label.

algebraic relation for the amplitudes

−SK − νK2U + F − Φm

τ
X = 0 . (9)

In Fig. 6a-b, we show the profiles of the Reynolds stress and momentum exchange for different

values of Φm and τ = 0.58. They are very well approximated by the monochromatic functional

form (8). The amplitudes of the Reynolds stress and exchange terms, normalized with the forcing

amplitude F , are shown in Fig. 6c. The amplitude of the viscous term νK2U/F (not shown) remains

small with respect to the other terms (its effect on the total budget is only about 2 − 3%). For

vanishing mass loading (Φm = 0), the exchange term is zero and the Reynolds stress contribution

is maximum, while increasing Φm the two terms becomes of the same order. For even larger mass

loading (Φm & 1) the coupling term dominates over the Reynolds stress term. Notice that the

dependence on τ is very weak, this is consistent with the observation that, since at leading order

v − u ≈ −τDtu, the amplitude of exchange term X is order τ , meaning that ΦmX/τF depends

upon τ only at higher orders.

The dimensionless version of the momentum budget is obtained by dividing all the terms of

Eq. (9) by KU2 and defining the friction coefficient f = F/(KU2) [44], (quantifying the ratio

between the work done by the force and the kinetic energy of the mean flow) the Reynolds stress
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coefficient σ = S/U2, and the exchange coefficient χ = ΦmX/(τKU
2):

f =
1

Re
+ σ + χ . (10)

In Fig. 7a, we show the friction factor f as a function of the Reynolds number. In the absence

of particles (Φm = 0) an asymptotic constant value for the friction coefficient is reached for large

enough Reynolds numbers as f = f0 + b/Re (with f0 = 0.124 and b = 5.75)[44]. Figure 7a shows

that the presence of particles increases the friction coefficient, by reducing the mean velocity U .

We remark that, since both f and Re depend solely on U and do not depend explicitly on the

particle parameters τ and Φm, all the values of f obtained in the simulations at fixed F and ν lie

on the curve f = F/(ν2K3Re2). Not surprisingly, the effect is stronger for larger values of Φm

(vanishing in the passive limit Φm = 0). Conversely, the dependence of the friction coefficient f

on the inertia is counterintuitive. One could expect that in the limit St→ 0 the particles become

passive and they do not affect the flow, while we find that the largest friction is obtained with

smaller Stokes times, in particular for large Φm.

We understand the non-trivial dependence on St as resulting from the combination of two

effects. First, in the limit St → 0 at finite mass fraction Φm the particles reduce the effective

forcing intensity, causing an increase of the drag coefficient. Second, this increase is mitigated

by the turbophoresis for particles with larger St, thus leading to values of f closer to that of the

pure fluid. Let us discuss in detail these two mechanisms. As shown above (Cfr. Eq. (6)), in

the limit of vanishing inertia St → 0 the velocity field u is equal to that of a pure fluid (without

particles) which satisfies the Navier-Stokes equation with rescaled forcing f ′ext = fext/(1 + Φm)

and viscosity ν ′ = ν/(1 + Φm) [59]. The friction factor of the dusty Kolmogorov flow is therefore:

f = F/(KU2) = (1 + Φm)F ′/(KU2) = (1 + Φm)f ′, where f ′ = F ′/(KU2) is the friction factor

of the pure fluid with rescaled Reynolds number Re′ = U/(ν ′K) = Re(1 + Φm). For Re � 1 the

friction factor f ′ follows the asymptotic behavior f ′ = f0 + b/Re′. This leads to an expression for

the friction factor of the particle-laden flow at large Re and small St:

f = (1 + Φm)f0 +
b

Re
. (11)

This explains why we observe an increased drag f in the limit St→ 0 at finite Φm. Equating the

above relation with f = F/(ν2K3Re2) we get a prediction for Re (valid for Re � 1 and St � 1)

in terms of the parameters F,K, ν,Φm:

Re =
b

2f0(1 + Φm)

[√
1 + 4

f0(1 + Φm)F

b2ν2K3
− 1

]
. (12)
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FIG. 7. (Color online) Friction and stress coefficients. (a) Friction factor f (filled symbols) as a function of
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absence of particles (Φm = 0) and the black continuous line is f = f0 + b/Re with f0 = 0.124 and b = 5.75

[44]. Dashed line represents the curve f = F/(ν2K3Re2). Blue asterisk corresponds to the simulation with

imposed uniform density (θ = 1) at Φm = 1 and τ = 0.58 (same parameters of run C3). (b) Stress coefficient

σ (solid curves) and exchange coefficient χ (dotted curves).

The values of Re obtained in our simulations with the smallest inertia (τ = 0.10) are in agreement

(within 5%) with the prediction (12). The mitigation of the drag enhancement (11) that we observe

at increasing inertia, is due to the turbophoresis. Since turbophoresis reduces the concentration

of particles in the regions of higher turbulence intensities, it is expected to reduce, by a negative

feedback, the effect of particles on the turbulent flows. Therefore the resulting friction coefficient

should be closer to that of the pure fluid for particles with larger St. In order to demonstrate this

point, we performed additional simulations of equations (1-2) in which the particle density field is

artificially imposed to be homogeneous (θ ≡ 1), thus switching off any turbophoretic effect. The

result of these simulations is shown in Fig. 7a for the largest Stokes time (τ = 0.58) and mass

loading Φm = 1. It is evident that, at given Φm and τ , the simulation with imposed uniform

concentration produces a larger effect (larger friction coefficient) with respect to the fully coupled

model, since it suppress the negative feedback produced by turbophoresis. Because of this effect, at

fixed Φm, particles with larger τ , displaying a larger turbophoretic effect, cause a weaker increase

of the drag coefficient than the particles with smaller τ , as observed in Figure 7.

We finally consider the behavior of the stress coefficient σ. We remark that in absence of

particles (Φm = 0), σ follows the expression σ = f0 + (b − 1)/Re [44], inherited from the Re-

dependence of the friction factor f . Increasing the mass loading Φm > 0, σ attains values not too
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far from the case Φm = 0, but slightly shifted below. By considering points at constant τ , they

appear to be disposed in lines that stray from the point at Φm = 0 with different slopes. Increasing

τ , the lines gradually deviates from the curve at Φm = 0. Increasing the mass loading, σ decreases

while χ grows, similarly to what observed for the momentum budget in Fig 6c. Although, the

momentum balance indicates a drastic reduction of the Reynolds stress S, the stress coefficient σ

shows a much weaker dependence on Φm, with only moderate variations 20% at most, with respect

to the friction coefficient f , which is increased of about 110%.

V. SUMMARY AND PERSPECTIVES

In this work we have presented the results of numerical simulations of a fully Eulerian model

for a two-way coupled particle-laden turbulent Kolmogorov flow at varying the inertia and mass

loading of the dispersed particle phase. The peculiarity of the Kolmorogov flow is that, while it

has no material boundaries, it is characterized by a well defined mean velocity profile as well as

persistent regions of low and high turbulent intensity. These features are here exploited to study

the active role of the particles in the phenomena of drag enhancement and turbophoresis occurring

in bulk flow.

We have shown that, at increasing mass loading, the Stokes drag exerted by particles on the

fluid phase induces a reduction of both the mean flow and the turbulent fluctuations. As a conse-

quence, the presence of suspended particles reduces the Reynolds number and increases the friction

coefficient, defined as the ratio between the work of the external force and the kinetic energy of the

mean flow. Noteworthy, we have found that the drag enhancement is higher in the case of particles

with smaller inertia which, at a first glance, appears counterintuitive because for vanishing inertia

particles are expected to recover the dynamics of fluid elements. While the latter expectation is

true, one must consider that the particles are heavier than the fluid. As a result, the fluid and

the particles, in the limit of vanishing inertia, basically form a denser fluid. Using this simple

idea, originally due to Saffman [41], we could explain the apparently counterintuitive dependence

on the Stokes number in terms of an effective rescaling of the forcing amplitude caused by the

increase in fluid density. The suppression of turbulent intensity at increasing mass loading causes a

reduction of the turbophoresis, quantified by the amplitude of the spatial modulation in the mean

particle density profile. As expected, this effect is more pronounced for particles with large inertia.

Furthermore, because of their preferential migration toward regions of weaker turbulent intensity,

particles with large inertia are less efficient in exerting their drag on the fluid and, therefore, they
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cause a weaker drag enhancement with respect to particles with smaller inertia at equal mass

loading.

It is worth comparing the effects of the particle phase in the Kolmogorov flow with those observed

in channel flows. The reduction of the turbophoresis at increasing mass loading and turbulent

attenuation are observed both in the Kolmogorov and channel flows [14, 48]. Drag enhancement

observed in the Kolmogorov flow seems to be at odds with the observation of Ref. [19] that reported

drag reduction in channel flow simulations, however, other works did not find significant variations

of the mean flow [14, 15]. In general, in wall bounded flows the effects of the particles in the

boundary layers might be sensitive to details and more important than those occurring in the bulk

flow, in this respect the Kolmogorov flow provides a useful numerical setup to investigate the latter.

Concerning the relative importance of the mass loading and inertia, based on our numerical

simulations of the particle-laden Kolmogorov flow, we found that while the inertia plays a major

role in the particles’ dynamics, it has a weaker influence on the properties of the flow, which are

more critically dependent on the mass loading. We observed, however, that any change in the

mass loading Φm results also in a change of the Stokes number St. Indeed, an increase in the mass

loading can be achieved by (i) increasing the material density of the particle ρp, (ii) increasing

their size a, (iii) increasing the number of particles Np. The cases (i) and (ii) directly imply an

increase of the particle response time τ , and therefore of the Stokes number. In the case (iii) τ

remains unchanged, but the viscous time τη is affected by the reduction of turbulent fluctuations,

producing again a change of St.

A variety of open questions and issues here can be addressed using the present model. First of

all, remaining within the settings of the Kolmogorov flow, it would be interesting to study the effect

of particles on the stability properties at the transition from the laminar to the turbulent regime,

where the role of particle inertia can be important. It would also be interesting to exploit the

Eulerian model here discussed for studying modifications of turbulence at small scales extending

the preliminary study of Ref. [24] in two-dimensional turbulence and comparing with the results

obtained with Eulerian-Lagrangian models [23, 25]. Moreover, the model can be easily modified

to include gravity allowing to study sediment-laden flows [5] or particle-induced Rayleigh-Taylor

instability [60].
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Appendix A: Details on numerical simulations

1. Comparison with Lagrangian scheme

In this appendix we benchmark the fully Eulerian model (1-3), in the absence of back reaction

(Φm = 0), with previous numerical results, obtained with one-way coupled inertial particles in-

tegrated with a Lagrangian scheme [39]. In particular, the latter were performed with the same

parameters reported in Table I (see runs A1,B1 and C1), with grid resolution M = 128 and

Np = 4 · 105 particles for each value of the Stokes time τ . In Fig. 8, we compare the mean par-

ticle density profiles obtained with the Eulerian model and with the Lagrangian simulations for

τ = (0.10, 0.34, 0.58). As one can appreciate the two schemes are in in very good agreement.

2. Role of small-scale regularization

As discussed in Sec. III, to mitigate the possible onset of instabilities due to the formation

of strong gradients in the particle density and velocity fields, Eqs. (2-3) must be regularized at

small scales. To this aim, as customarily done in numerical simulations, especially when using

a pseudo-spectral scheme, one can add an artificial hyperviscous term νp(−1)h+1∇2hv to Eq. (2)

and a hyperdiffusivity term κ(−1)h+1∇2hθ to Eq. (3). The power h controls the order of the

hyperviscosity and diffusivity, the higher the value the more the effect of dissipation can be confined

to small scales. However, it is usually convenient to consider low orders of hyperviscosity and

diffusivity to avoid the phenomenon of bottleneck [61].

The results shown in Sec. IV have been obtained with a standard Laplacian term (h = 1) and

moreover, to minimize the number of parameters, we have chosen νp = κ = 10−3 equal to the fluid

viscosity ν. To test the impact of the chosen regularization on the presented results, we performed

a few additional simulations using a higher order regularization, in particular we used h = 2 with

νp = κ = 10−6. In this appendix, we show that the effect of the regularization is actually very
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FIG. 8. (Color online) Mean particle density profile θ(z) for different values of Stokes time (see legend)

obtained with the fully Eulerian scheme with Φm = 0.0 (dashed curves) and with the one-way coupling

Lagrangian scheme of Ref.[39] (symbols). Lagrangian data have a poorer statistics with respect to Eulerian

ones, therefore to decrease a bit the statistical fluctuations we exploited the symmetry with respect to L/2

to further average the density profile.

weak and that the results presented in Sec. IV are robust. For the sake of comparison, we have

replicated two sets of simulations with the higher order regularization namely, with reference to

Table I, we have fixed τ = 0.34 and explored all value of Φm (runs B1-B3), and fixed Φm = 1.0 for

all the values of τ (runs A3, B3 and C3). To reduce the computational time, these additional runs

have been performed with half the statistics of the previous ones. Therefore error bars are slightly

larger than the ones considered in the viscous simulations reported in the main text.

In Figs. 9a,b we compare the mean profile ux(z) of the longitudinal velocity for τ = 0.10 and

0.58 with the largest mass loading Φm = 1.0, obtained with the viscous and hyperviscous runs.

With hyperviscosity, the profile is found to be increased by a small amount. In Figs. 9c and d we

show the dependence of the mean flow amplitude U on Φm for τ = 0.34 and on τ for Φm = 1,

respectively. In all cases the differences between the two regularization are within 4 − 6%, which

is in the order of the statistical error for the hyperviscous simulations.

In Fig. 10 we report the analysis on the mean profile and amplitude of the Reynolds stress

uxuz(z) for the available configurations of (Φm, τ). As before, with hyperviscosity we found a

(very) weak enhancement of the Reynolds stress amplitude. However, in all cases the effect is very
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(c) Amplitude of the mean flow U as a function of Φm for fixed τ = 0.34; (c) same of (b) as a function of τ

for fixed Φm = 1.0. Parameters νp = κ = 10−6 for h = 2, for simulations with h = 1 see Table I.

small and nearly negligible, with relative discrepancies between 2 − 6%, which is in the order of

statistical error for the hyperviscous simulations.

In conclusion, the results discussed in Sec. IV are robust and basically independent of the

regularization scheme.
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