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Lyapunov exponents of heavy particles and tracers advected by homogeneous and isotropic
turbulent flows are investigated by means of direct numerical simulations. For large values of the
Stokes number, the main effect of inertia is to reduce the chaoticity with respect to fluid tracers.
Conversely, for small inertia, a counterintuitive increase of the first Lyapunov exponent is observed.
The flow intermittency is found to induce a Reynolds number dependency for the statistics of the
finite-time Lyapunov exponents of tracers. Such intermittency effects are found to persist at
increasing inertia. © 2006 American Institute of Physics. �DOI: 10.1063/1.2349587�
Impurities suspended in incompressible flows are rel-
evant to several physical processes, such as spray combus-
tion, raindrop formation, and transport of pollutants.1–3 These
particles, being typically of finite size and heavier than the
ambient fluid, cannot be modeled as simple tracers. They
indeed possess inertia, which is responsible for the sponta-
neous generation of strong inhomogeneities in their spatial
distribution.4–6 In a turbulent flow, their clustering is more
efficient at small scales, below the dissipative scale, where
the fluid velocity field is smooth. The intensity of particle
clustering there is related to the statistics of the Lyapunov
exponents of particle trajectories.7 The behavior of the
Lyapunov exponents of inertial particles and the relation
with particle clustering was recently investigated in random
short-correlated flows.8,9

In this Letter, be means of high-resolution direct numeri-
cal simulations, we investigate the Lyapunov spectra of iner-
tial particles, varying their response time �s and the Reynolds
number of the carrier turbulent flow. For �s larger than the
Kolmogorov-scale turnover time ��, the presence of inertia
results in a generic reduction of chaoticity: the leading
Lyapunov exponent is smaller than the one of tracers and the
strongest chaotic fluctuations become less probable. Remark-
ably, for �s���, an increase of chaoticity is observed; this
effect can be understood in terms of the preferential concen-
tration of particles in the high-strain regions of the flow. For

fluid tracers, we observe intermittency effects on the statis-
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tics of chaotic fluctuations: the Reynolds-number depen-
dence deviates from the dimensional prediction. Such devia-
tions are found to persist for particles with inertia.

A small spherical particle of radius a with a density �
much larger than the density �0 of the surrounding incom-
pressible fluid evolves according to the dynamics10

ẋ = v, v̇ = −
1

�s
�v − u„x�t�,t…� , �1�

where u is the fluid velocity at the location x of the particle
that moves with velocity v, and �s=2a2� / �9��0� is the
Stokes time �� is the kinematic viscosity of the fluid�. Equa-
tion �1� holds when the flow surrounding the particle is a
Stokes flow; this requires a��, � being the Kolmogorov
scale of the flow. The Stokes number is defined as St
=�s /��, where �� is the eddy turnover time associated with
�. Particles are assumed to behave passively: we neglect
their feedback on the flow, which is justified for very diluted
suspensions.11 For comparison, we also study the motion of
neutral particles that follow the dynamics ẋ=u(x�t� , t),
which corresponds to the limit �s→0 in Eq. �1�. We remark
that in �1� we also neglect any possible effect of molecular
diffusivity. Although this is generally very small in the case
of inertial particles, it can affect the evolution of particle
density.12,13

The incompressible fluid velocity field u�x , t� evolves

according to the Navier-Stokes equations

© 2006 American Institute of Physics2-1
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�tu + u · �u = − �1/�0� � p + ��u + f, � · u = 0, �2�

where the forcing provides an external energy input at a rate
�= �f ·u�. These equations are integrated on a d=3 dimen-
sional grid of size N=128,256,512 with periodic boundary
conditions, by means of a fully de-aliased pseudospectral
parallel code with second-order Adams-Bashforth time-
stepping. Energy is injected by keeping constant the spectral
content of the two smallest wave-number shells. Viscosity is
chosen to resolve well the small-scale velocity �kmax�
�1.7�. The Reynolds numbers based on Taylor’s microscale
are in the range R	� �65:185� �see Ref. 14 for further de-
tails�.

Once the fluid flow has reached a statistically stationary
state, particles are homogeneously seeded with initial veloci-
ties equal to the fluid velocity at their locations. We followed
33 sets of 2000 particles with Stokes numbers ranging from
0 to 2.2 for a time �200�� after relaxation of transients.

In order to compute the Lyapunov spectrum, we follow
along each particle trajectory the time evolution of 2
d in-
finitesimal displacements in the position-velocity phase
space obtained by linearizing the particle dynamics �1�. The
infinitesimal volume Vj, defined by j linear independent tan-
gent vectors, grows in time with an exponential rate
�i=1

j �i�T�= �1/T�ln�Vj�T� /Vj�0��, which defines the finite-
time Lyapunov exponents �i�T� �FTLE�, also called stretch-
ing rates. They asymptotically converge to the Lyapunov ex-
ponents 	i=limT→��i�T�, which by definition are labeled in
decreasing order 	1 ¯ 	2d. To compute these exponents
numerically, we make use at each time lag �� of a standard
technique based on the orthonormalization of the infinitesi-
mal displacements by a Gram-Schmidt procedure �see, e.g.,
Ref. 15�.

In Fig. 1, we show the behavior of the first three
Lyapunov exponents as a function of St for the largest value
of the Reynolds number. These three exponents rule the time

FIG. 1. Lyapunov exponents 	i for i=1 �triangles�, i=2 �crosses�, and i=3
�circles� as a function of Stokes number. R	=185. In the inset we show the
relative growth of the first Lyapunov exponent 	1�St� /	1�0� occurring at
small St.
evolution of infinitesimal elements in the physical space. For

ownloaded 01 Mar 2010 to 131.155.151.133. Redistribution subject to
the range of Stokes numbers investigated here, we observe
	4		5		6
−1/�s, signaling the relaxation of particle ve-
locities to the fluid.

The largest Lyapunov exponent 	1 measures the chaotic
separation of particle trajectories. To understand how chao-
ticity is affected by inertia, two mechanisms have to be con-
sidered. First, inertial particles have a delay on the fluid mo-
tion; this means that their velocity is approximately given by
that of tracers with a time filtering over a time window of
size �s. This effect weakens chaoticity. Second, heavy par-
ticles are ejected from persistent vortical structures and con-
centrate in high-strain regions. Since these portions of the
flow are characterized by larger stretching rates, the chaotic-
ity of particle trajectories is increased with respect to tracers
that homogeneously visit all the regions. As emphasized in
the inset of Fig. 1, the latter effect dominates for St�1,
where 	1 is larger than the Lyapunov exponent of the fluid
tracers �St=0�. This is not predicted from analytical and nu-
merical studies done in white-in-time random velocity
fields:9 such flows clearly possess no persistent structures.
Conversely, at sufficiently large St, the Lyapunov exponent
decreases: preferential concentration is then negligible and
the time-filtering approximation becomes relevant. For such
a large inertia, the white-in-time models apply and indeed
predict a decrease of 	1 as a function of St. Note that the
competition between filtering and preferential concentration
described above also enters in the distribution of particle
acceleration.14

As observed in Fig. 1, the time evolution of infinitesimal
surfaces is also affected by these two mechanisms. Indeed, at
varying St, the second Lyapunov exponent 	2 displays a be-
havior qualitatively similar to that of 	1. For the tracers �St
=0�, incompressibility of the flow implies 	1+	2+	3=0.
Since for a time-reversible dynamics one has 	2=0, the ratio
	2 /	1 is a measure of the irreversibility of the dynamics.
Previous numerical investigations at moderate Reynolds
numbers16 indicate 	2 /	1�0.25; our simulations indicate
	2 /	1= �0.28±0.02�. This irreversibility stems from the fact
that the Navier-Stokes equation itself is not invariant with
respect to time reversal.

The behavior of 	3 as a function of St markedly differs
from that of the first two exponents. Due to the dissipative
nature of the inertial particle dynamics, volumes in physical
space are not conserved. Indeed, the volume growth rate,
defined as �=	1+	2+	3, which identically vanishes for
fluid tracers, is negative for all Stokes numbers in the range
0�St�1.72 �see Fig. 2�. This means that all volumes from
physical space contract to zero at large times. Such cluster-
ing, which happens at scales much smaller than �, is a con-
sequence of the convergence of particle trajectories toward a
dynamically evolving �multi�fractal set.7 The fractal dimen-
sion of this attractor can be estimated by means of the
Kaplan-Yorke �or Lyapunov� dimension17 as d	=J
+�i=1

J 	i / �	J+1�, where J is the largest integer such that
�i=1

J 	i�0. The fractal dimension of inertial particles is rep-
resented in Fig. 2 as a function of St. The minimum at St

0.5 corresponds to maximal clustering. For St�1.72, the
fractal dimension becomes greater than d=3, indicating that

the spatial distribution of particles is not fractal anymore. For
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St
1.72, the volume growth rate � vanishes, meaning that
the dynamics of such particles preserve volumes on average.
However, the finite-time volume growth rate �=�1+�2+�3

experiences large fluctuations, as shown in the inset of Fig.
2. As a result, strong local inhomogeneities are present in the
particle concentration also at large values of St.

We now turn to the study of the Lyapunov exponent
dependence on the Reynolds number of the flow. The inset of
Fig. 3 shows the first Lyapunov exponent for neutral par-
ticles �i.e., St=0� as a function of R	. Since 	1 is a small-
scale turbulent quantity with the dimension of an inverse
time, one expects 	1���const and thus 	1�R	. However, as
a consequence of the intermittent fluctuations of the velocity
gradients in turbulent flows, one can predict an anomalous
dependence on Reynolds number 	1�R	

� with ��1.18 This
implies that 	1�� decreases with Reynolds, as indeed con-
firmed by our simulations.

FIG. 2. Lyapunov dimension d	 �squares� and volume growth rate �
=�i=1

3 	i �circles� as a function of Stokes number �R	=185�. Inset: PDF of
the finite-time volume growth rate ��T� for T
80��.

FIG. 3. Cramér function S��1� for fluid tracers for R	=65 �squares�, 105
�circles�, and 185 �triangles�. Inset: Lyapunov exponent 	1 �crosses� and

2
reduced variance �=T� �diamonds� as a function of R	.
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Intermittency is actually expected to affect the whole
probability distribution function �PDF� of the largest finite-
time Lyapunov exponents �1�T�. For T sufficiently large, the
distribution of FTLE is expected to obey a large-deviation
principle, i.e., pT��1��exp�−TS��1��. The Cramér �or rate�
function S��1� is a non-negative concave function that van-
ishes at its minimum, attained for �1=	1. Small fluctuations
occurring when ��1−	1 � �T−1/2 are described by the central-
limit theorem, which amounts to approximating S�·� by a
parabola in the vicinity of its minimum. The effect of inter-
mittency on such small fluctuations can be measured from
the variance �2����1−	1�2� of the FTLE, or more particu-
larly from the reduced variance �=T�2, which measures the
width of the Cramér function. As predicted in Ref. 18, inter-
mittency is responsible for an anomalous dependency of �
on the Reynolds number. More particularly, ��� is expected
to grow with R	. This tendency is qualitatively confirmed by
our simulations as shown in the inset of Fig. 3. The signature
of intermittency on the higher-order statistics of �1 can
hardly be measured in a reliable way. Indeed, as shown in
Fig. 3, the PDFs of �1 for the three R	 considered, once
centered and normalized, almost collapse for fluctuations as
large as 3�. However, it is still possible to observe a system-
atic deviation from the Gaussian distribution. Because of in-
compressibility, the left tail of the PDF is bounded by the
constraint that �1�0. It thus has to decrease faster than a
Gaussian, as indeed observed. The right part of the PDF is
related to strong velocity gradients. Such events apparently
lead to a tail that is fatter than Gaussian. Turbulent intermit-
tency should therefore mainly affect the right tail.

For inertial particles, intermittent corrections act in the
same direction as for fluid tracers. Figure 4 shows the behav-
ior of 	1 and of the reduced variance � as a function of the
Stokes number for various Reynolds numbers. As for tracers,
for any given St, 	1�� decreases while ��� increases with
R	. The inset of Fig. 4 shows, for R	=185, the Cramér func-

FIG. 4. Mean value 	1 �small symbols� and reduced variance � �large
symbols� of the FTLE as a function of the Stokes number, for R	=65
�squares�, R	=105 �circles�, and R	=185 �triangle�. Inset: Cramér function
S��1� for R	
185, and various values of the Stokes number: St=0 �tri-
angles�, St=0.32 �diamonds�, and St=2.19 �stars�.
tion of the FTLE �1�T� for both neutral particles �St=0� and
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inertial particles with two different St. For St�1, the whole
distribution shifts to higher values, signaling the increased
chaoticity. For St�1, the distribution of FTLE shifts to
lower values and fluctuations become less probable. The
asymmetry observed in the PDF of tracer stretching rates
decreases with inertia. At the largest values of St that are
considered, the Cramér function �1 becomes indistinguish-
able from a parabola. Finally, it is worth noticing that the
dependence on the Reynolds number is less significant for
the volume growth rate �, and thus for the fractal dimension.
Intermittency affects only weakly particle clustering. A
clearer understanding of this issue requires an investigation
of larger values of the Reynolds number with longer statis-
tics. This can hardly be achieved numerically but could be
done experimentally using standard box-counting techniques
to estimate the fractal dimensions of the particle spatial dis-
tribution.

We have seen that two mechanisms enter the dynamics
of inertial particles: they concentrate in high-strain regions
and they lag behind the fluid flow. In the limit of either small
or large inertia, one of the two effects dominates the other. At
present, tackling analytically the behavior of the largest
Lyapunov exponent as a function of the Stokes number could
only be done in these asymptotics.9 For the range of Stokes
numbers considered here, both effects compete and influence
the Lyapunov exponents, preventing a complete analytical
description. A numerical confirmation of the present theoret-
ical predictions would require greater computational re-
sources.

We acknowledge useful discussions with A. Celani and
A. Lanotte. This work has been partially supported by the
EU under Contract No. HPRN-CT-2002-00300, and the Ga-
lileo program on Lagrangian Turbulence. Numerical simula-
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tions have been performed at CINECA �Italy� and IDRIS
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CT-2003-506079.
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