6 research outputs found

    Quantifying the Impact of Nonlinear Internal Waves on the Marine Atmospheric Surface Layer

    Get PDF
    2019 IEEE/OES Twelfth Current, Waves and Turbulence Measurement (CWTM)The article of record as published may be found at https://doi.org/10.1109/CWTM43797.2019.8955282In the coastal environment, the oceanic flow over varying bathymetry can displace the isopycnal surfaces and, thus, generate nonlinear internal waves. These high frequency waves can propagate across large distances and over their lifetime significantly influence local currents and turbulence within a coastal region. These waves also create a common phenomenon that is recognized by even a casual observer: smooth, quasilinear bands of water that disrupt the typically rippled sea surface. While NIWs are an important oceanic process and their surface expression has been characterized and discussed for decades, investigators have not linked the presence of internal wave-driven surface roughness to an atmospheric response. Here we use a combination of oceanic and atmospheric measurements, as well as ocean surface visualization, to show that NIWs can alter the flow within the MASL and the subsequent momentum flux across the air-sea interface, at the dominant temporal-spatial scales of the NIWs. Our measurements were collected from the FLIP, which was deployed as part of the Coupled Air Sea Processes and Electromagnetic ducting Research (CASPER) West Coast field campaign. Using a thermistor chain, X band marine radar, upward- and downward-looking ADCP, as well as a visual field camera imaging the ocean surface near FLIP, we were able to identify several NIW events and track individual waves incident to the platform. This information was used to isolate the atmospheric response, as captured by a profile of meteorological flux sensors installed on a mast that was deployed from FLIP's boom. The observed NIW-interactions were found in multiple cases with different MASL conditions and internal wave properties. In the context of CASPER, the surface roughness associated with NIWs represents a persistent, quasi-Lagrangian heterogeneity that may impact the atmospheric gradients, which in turn modulates the index of refraction and the propagation of electromagnetic radiation.Office of Naval ResearchFunding provided by Office of Naval Research N0001418WX01087

    The Atmospheric Surface Layer Response to Nonlinear Internal Ocean Waves

    Get PDF
    Ocean Sciences Meeting 2020Nonlinear internal ocean waves (NIWs) are regular features of the coastal ocean, where the hydrodynamic flow over changing bathymetry perturbs the isopycnal surfaces generating these high frequency waves. At the air-sea interface, these transient features may be characterized by quasilinear bands of smooth or rough ocean surface that propagate in the direction of the underlying NIWs. Theoretically, this roughness heterogeneity is driven by the phase-locked divergence and convergence of the NIW orbital motions. This NIW action modulates surface wavelengths within the capillary and gravity-capillary band, which also hold the majority of the tangential wind stress. Understanding the spatial-temporal distribution of these small-scale surface waves is critical to constraining air-sea coupling, which is significantly complicated in the case of a heterogeneous surface. The impact NIW-driven surface roughness has on the variability and structure of the atmospheric surface layer is unknown. During a Coupled Air Sea Processes and EM ducting Research (CASPER) field campaign, the Research Platform FLIP was deployed for five weeks in a coastal area with a suite of near-surface oceanographic and meteorological measurements, as well as near-field remote sensing of the surface using both radar, infrared, and optical visualization. This confluence of measurement capability from an ideal platform, enabled us to simultaneously identify and track NIWs while characterizing the variance and structure of the kinematic and thermodynamic state on either side of the interface. NIWs were regularly observed from FLIP, with their characteristic surface banding observed nearly every day of the campaign. Our analysis into one case revealed that NIWs exert a distinct and significant impact on the mean wind gradient, as well as the air-sea momentum flux (i.e. wind stress) on both the scale of individual wave fronts and an entire NIW packet. In particular, the MASL flow adjusts instantaneously to the smooth-rough transitions of individual bands, thereby enhancing the wind stress over the surface. Our presentation will focus on summarizing these findings, as well as highlighting additional NIW events observed during the CASPER campaign from FLIP to discern any underlying or general pattern in the nature of NIW-atmosphere interactions

    Factor Xa cleaves SARS-CoV-2 spike protein to block viral entry and infection

    No full text
    The serine protease factor Xa (FXa) is upregulated in COVID-19 patients and functions in the coagulation pathway. Here, Dong et al characterise the basis of its antiviral activity in the context of SARS-CoV-2 pandemic variants
    corecore