33 research outputs found

    OuroboroSat: A Modular, CubeSat-Scale Instrumentation Platform

    Get PDF
    OuroboroSat (also known as MRMSS: the Modular Rapidly Manufactured Spacecraft System) is a modular instrumentation platform consisting of multiple 3 inch (7.5 centimeter) square printed circuit boards that are mechanically and electrically connected to one another in order to produce a fully- functioning payload facility system. Each OuroboroSat module consists of a microcontroller, a battery, conditioning and monitoring circuitry for the battery, optional space for solar panels, and an expansion area where an experimental payload or specialized functionality (such as wireless communication submodules) can be attached

    A Mobile Robot for Locomotion Through a 3D Periodic Lattice Environment

    Get PDF
    This paper describes a novel class of robots specifically adapted to climb periodic lattices, which we call 'Relative Robots'. These robots use the regularity of the structure to simplify the path planning, align with minimal feedback, and reduce the number of degrees of freedom (DOF) required to locomote. They can perform vital inspection and repair tasks within the structure that larger truss construction robots could not perform without modifying the structure. We detail a specific type of relative robot designed to traverse a cuboctahedral (CubOct) cellular solids lattice, show how the symmetries of the lattice simplify the design, and test these design methodologies with a CubOct relative robot that traverses a 76.2 mm (3 in.) pitch lattice, MOJO (Multi-Objective JOurneying robot). We perform three locomotion tasks with MOJO: vertical climbing, horizontal climbing, and turning, and find that, due to changes in the orientation of the robot relative to the gravity vector, the success rate of vertical and horizontal climbing is significantly different

    Sensor Arrays for Aerospace Vehicles

    Get PDF
    Advances in highly scalable sensors, wireless networks, distributed computing and data fusion algorithms enable significant improvements in high-level information-centric state determination for adaptable and autonomous aerospace vehicles. The objective is to increase insight into structural response of space vehicles and insight into the aerodynamics of new aircraft

    SpRoUTS (Space Robot Universal Truss System): Reversible Robotic Assembly of Deployable Truss Structures of Reconfigurable Length

    Get PDF
    Automatic deployment of structures has been a focus of much academic and industrial work on infrastructure applications and robotics in general. This paper presents a robotic truss assembler designed for space applications - the Space Robot Universal Truss System (SpRoUTS) - that reversibly assembles a truss from a feedstock of hinged andflat-packed components, by folding the sides of each component up and locking onto the assembled structure. We describe the design and implementation of the robot and show that the assembled truss compares favorably with prior truss deployment systems

    1D Printing of Recyclable Robots

    Get PDF
    Recent advances in 3D printing are revolutionizing manufacturing, enabling the fabrication of structures with unprecedented complexity and functionality. Yet biological systems are able to fabricate systems with far greater complexity using a process that involves assembling and folding a linear string. Here, we demonstrate a 1D printing system that uses an approach inspiredby the ribosome to fabricate a variety of specialized robotic automata from a single string of source material. This proof-ofconcept system involves both a novel manufacturing platform thatconfigures the source material using folding and a computational optimization tool that allows designs to be produced from the specification of high-level goals. We show that our 1D printingsystem is able to produce three distinct robots from the same source material, each of which is capable of accomplishing a specialized locomotion task. Moreover, we demonstrate the abilityof the printer to use recycled material to produce new designs, enabling an autonomous manufacturing ecosystem capable of repurposing previous iterations to accomplish new tasks

    Meso-Scale Digital Materials: Modular, Reconfigurable, Lattice-Based Structures

    Get PDF
    We present a modular, reconfigurable system for building large structures. This system uses discrete lattice elements, called digital materials, to reversibly assemble ultralight structures that are 99.7% air and yet maintain sufficient specific stiffness for a variety of structural applications and loading scenarios. Design, manufacturing, and characterization of modular building blocks are described, including struts, nodes, joints, and build strategies. Simple case studies are shown using the same building blocks in three different scenarios: a bridge, a boat, and a shelter. Field implementation and demonstration is supplemented by experimental data and numerical simulation. A simplified approach for analyzing these structures is presented which shows good agreement with experimental results

    Design of Multifunctional Hierarchical Space Structures

    Get PDF
    We describe a system for the design of space structures with tunable structural properties based on the discrete assembly of modular lattice elements. These lattice elements can be constructed into larger beam-like elements, which can then be assembled into large scale truss structures. These discrete lattice elements are reversibly assembled with mechanical fasteners, which allows them to be arbitrarily reconfigured into various application-specific designs. In order to assess the validity of this approach, we design two space structures with similar geometry but widely different structural requirements: an aerobrake, driven by strength requirements, and a precision segmented reflector, driven by stiffness and accuracy requirements. We will show agreement between simplified numerical models based on hierarchical assembly and analytical solutions. We will also present an assessment of the error budget resulting from the assembly of discrete structures. Lastly, we will address launch vehicle packing efficiency issues for transporting these structures to lower earth orbit

    Effects of coarse-graining on the scaling behavior of long-range correlated and anti-correlated signals

    Full text link
    We investigate how various coarse-graining methods affect the scaling properties of long-range power-law correlated and anti-correlated signals, quantified by the detrended fluctuation analysis. Specifically, for coarse-graining in the magnitude of a signal, we consider (i) the Floor, (ii) the Symmetry and (iii) the Centro-Symmetry coarse-graining methods. We find, that for anti-correlated signals coarse-graining in the magnitude leads to a crossover to random behavior at large scales, and that with increasing the width of the coarse-graining partition interval Δ\Delta this crossover moves to intermediate and small scales. In contrast, the scaling of positively correlated signals is less affected by the coarse-graining, with no observable changes when Δ1\Delta1 a crossover appears at small scales and moves to intermediate and large scales with increasing Δ\Delta. For very rough coarse-graining (Δ>3\Delta>3) based on the Floor and Symmetry methods, the position of the crossover stabilizes, in contrast to the Centro-Symmetry method where the crossover continuously moves across scales and leads to a random behavior at all scales, thus indicating a much stronger effect of the Centro-Symmetry compared to the Floor and the Symmetry methods. For coarse-graining in time, where data points are averaged in non-overlapping time windows, we find that the scaling for both anti-correlated and positively correlated signals is practically preserved. The results of our simulations are useful for the correct interpretation of the correlation and scaling properties of symbolic sequences.Comment: 19 pages, 13 figure

    Evaluating Network Performance of Containerized Test Framework for Distributed Space Systems

    Get PDF
    Distributed space systems are a mission architecture consisting of multiple spacecraft as a cohesive system which provide multipoint sampling, increased mission coverage, or improved sample resolution, while reducing mission risk through redundancy. To fully realize the potential of these systems, eventually scaling to hundreds or thousands of spacecraft, distributed space systems need to be operated as a single entity, which will enable a variety of novel scientific space missions. The Distributed Spacecraft Autonomy (DSA) project is a software project which aims to mature the technology needed for those systems, namely autonomous decision-making and swarm networking. The DSA project leverages a containerized swarm test framework to simulate spacecraft software, which can identify emergent behavior early in development. Container virtualization allows distributed spacecraft systems to be simulated entirely in software on a single computer, avoiding the overhead associated with conventional approaches like hardware facsimiles and virtual machines. For this approach to be effective, the simulated system behavior must not be artificially influenced by the swarm test framework itself. To address this, we present a series of benchmarks to quantify virtual network bandwidth available on a single-host computer and contextualize this against the network and application behavior of the DSA swarm test framework
    corecore