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ABSTRACT

Distributed space systems are a mission architecture consisting of multiple spacecraft as a cohesive system
which provide multipoint sampling, increased mission coverage, or improved sample resolution, while reducing
mission risk through redundancy. To fully realize the potential of these systems, eventually scaling to hundreds
or thousands of spacecraft, distributed space systems need to be operated as a single entity, which will
enable a variety of novel scientific space missions. The Distributed Spacecraft Autonomy (DSA) project
is a software project which aims to mature the technology needed for those systems, namely autonomous
decision-making and swarm networking. The DSA project leverages a containerized swarm test framework
to simulate spacecraft software, which can identify emergent behavior early in development. Container
virtualization allows distributed spacecraft systems to be simulated entirely in software on a single computer,
avoiding the overhead associated with conventional approaches like hardware facsimiles and virtual machines.
For this approach to be effective, the simulated system behavior must not be artificially influenced by the
swarm test framework itself. To address this, we present a series of benchmarks to quantify virtual network
bandwidth available on a single-host computer and contextualize this against the network and application
behavior of the DSA swarm test framework.

INTRODUCTION

The proliferation and popularity of small satellites
in use for scientific missions has driven an increased
interest in distributed space missions (DSMs). In
particular, more complex and dynamic DSMs will
need to rely increasingly on autonomous command-
ing, communication, and cooperation in order to
realize sophisticated mission goals.1 The physical
devices designed and built to actually perform these
DSMs are referred to as distributed spacecraft sys-
tems (DSS) and are the focal technology for this
paper.

Testing of space systems at the algorithmic, software,
and physical levels of functionality is a critical ele-
ment of the development process for virtually any
space mission.2 Historically, testing has relied on
facsimile devices such as flatsats, or similar dedi-
cated hardware, meant to match the system used

in-flight as closely as possible.3 Unlike the tradi-
tionally single-purpose nature of spacecraft software
systems, newer spacecraft systems are more often
composed of reused software components from pre-
vious missions.4 Additionally, large-scale software
deployment necessarily means reuse of code across
many spacecraft at the same time. These effects com-
bine to form a larger potential failure area, further
justifying increased attention to the development of
those software components. For distributed space-
craft design, this means that performing repeatable
and detailed testing and simulations of space systems
continuously throughout their development is inher-
ently more important. This paper sets out to define
common motivations and challenges behind DSMs
and the development of their spacecraft software,
describe an approach for testing a DSS early in de-
velopment, and evaluate the fidelity and applicability
of this testing system to both the use case it was
originally designed for and other generic DSS.
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BACKGROUND

This section covers the technology components which
form the motivational building blocks for this re-
search. The sections are organized in order of speci-
ficity, starting with the general problem space and
ending in the domain of the specific focus of this
research.

Distributed Space Systems

Broadly speaking, DSS comprise a family of system
architectures wherein several spacecraft operate to
achieve a singular goal. Many basic examples of
DSS are currently active in space missions serving
functions across multiple scientific domains. For ex-
ample, the following categories of missions include
launches spanning several decades into the past: com-
munications networks, such the Iridium or SpaceX
Starlink constellations; position and navigation, such
as the GPS or GLONASS systems; earth sensing
and imaging, such as Techsat-21,5 Pléiades Neo,6 or
Tandem-X;7 and ionospheric or heliophysics missions
such as GRACE8 or MMS.9 Many more scientific DSS
are under active development for heliophysics,10–14

planetary missions,15 and radio astronomy16,17 use
cases.

While some DSS already serve functions which may
not be feasible or even possible using a monolithic
spacecraft, the addition of certain features can fun-
damentally augment DSS abilities by facilitating
different forms of autonomous operation. Specifi-
cally, if given sufficient compute capability and inter-
satellite network links (ISLs), a DSS can be designed
to perform automatic workload balancing, respond to
sudden opportunities or operational faults, improve
ground-to-swarm network availability, intelligently
share data between spacecraft, and avoid communi-
cation delays.18 Given the scientific potential offered
by these capabilities, this research focuses on high-
computational-performance DSS with ISLs.

DSS with ISLs can be further categorized in terms
of their mission goals, homogeneity, relative spatial
proximity, collaborative abilities, and mission inter-
dependencies.19 Satellite constellations use spatially
distant spacecraft in fixed orbits, but seldom include
ISLs for collective system decision-making due to
their long communication distance.1 Federated satel-
lite systems are heterogenous in spacecraft compo-
sition and do not operate towards common system
goals, and fractionated satellite systems are explicitly
heterogenous components of a singular system. Satel-
lite clusters are formed by collections of homogenous

spacecraft in fixed, nearby positions, operating on
some common goal. Satellite trains are similar to clus-
ters, but conventionally share the same orbital path,
and do not necessarily function similarly or towards
the same mission goal. Swarms are the most dynamic
and flexible taxonomy of DSS, conceptually encom-
passing both constellations and clusters, incorporat-
ing dynamic spatial distances and optional spacecraft
heterogeneity. Crucially, spacecraft swarms represent
the most generic range of network topologies for an
autonomous DSS and are therefore of prime inter-
est for this research. A simplified summary of these
taxonomies is given in Table 1.

Swarm Communication

Communication between spacecraft in a swarm con-
figuration happens in dynamic topologies, with some
connections between spacecraft behaving intermit-
tently, whether intentionally part of a mission or
incidentally due to flight conditions. These demand-
ing network conditions require that flight software is
capable of dynamically maintaining a useful under-
standing of its present network state, conceptually
operating as a Mobile Ad-Hoc NETwork (MANET).
Little flight heritage exists around MANET technolo-
gies in space, with only sparse simulation and theoret-
ical exploration of its applications in a DSS.20

Even with a MANET in place, spacecraft swarms
still require additional functionality for relaying in-
formation across the network in a way which en-
sures delivery to all connected systems, regardless
of topology, ideally with some guarantee of quality-
of-service (QoS). In terrestrial computing, one ap-
proach to solving this communication problem is
through the use of a Data Distribution Service (DDS)
standards-compliant networking middleware. DDS is
a platform- and language-agnostic specification that
implements a publish-subscribe model for communi-
cation in a dependable manner.21 This technology
lends itself well to the goals of autonomous DSS
and is featured in the mission use case described
below.

Distributed Spacecraft Autonomy

The motivating mission context for this paper is
the Distributed Spacecraft Autonomy project (DSA)
at NASA Ames Research Center, which seeks to
develop and mature technologies and methods for
autonomous coordination, adaptive reconfiguration,
planning, and swarm commanding.18 This mission
is structured to specifically advance capabilities in
the areas of swarm scale, complexity, and human-
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Table 1: Feature Comparison of DSS Simplified19

DSS Architecture Mission Goals Cooperation Homogeneity Inter-Satellite Distance Autonomous/Co-dependent

Constellations Shared Required Homogeneous Regional Autonomous
Trains Independent Both Heterogeneous Local Autonomous
Clusters Shared Required Homogeneous Local Both
Swarms Shared Required Both Both Both

Fractionated Satellites Shared Both Heterogeneous Local Both
Federated Satellites Independent Both Heterogeneous Both Autonomous

swarm interaction. Those capabilities are visualized
in Figure 1.

The project is divided into two phases of technol-
ogy demonstration: initially, a software payload on
a flight mission consisting of a swarm of 4 spacecraft
operated as part of the Starling technical demonstra-
tion;20 and later, a simulation mission involving a
much larger swarm of 100 facsimile spacecraft in a
hardware-in-the-loop (HiL) configuration. The flight
software used in each spacecraft is based on NASA’s
Core Flight Software. Each spacecraft is equipped
with a uniform set of mission applications designed to
handle incoming sensor information, interface with
the publish-subscribe inter-satellite network inter-
face, and autonomously compute an execution plan
for how to use sensor data in the next cycle of data
collection based only on data received from other
spacecraft in the swarm.24

Core Flight System

The DSA project uses NASA’s Core Flight System
(cFS), previously known as core Flight Software under
the same acronym. cFS is an open-source, reusable
software framework for space missions that is dis-
tributed by NASA and used broadly in the space
community for various missions.25 cFS is a reusable
framework derived from the codebase of historical
NASA missions and maintained agency-wide as a set
of centrally managed open-source components and
interfaces, available for reuse and extension across
the broader space science domain. cFS includes a set
of commonly needed applications; storage, command,
& data-handling utilities; the core Flight Executive
(cFE); and an explicit application programming in-
terface (API) between each programming layer and
component.26 The layout of cFS is shown in Fig-
ure 2 for reference. By defining a standard, layered
API for components of cFS, scientists can develop
new applications, platform support packages (PSPs),
and operating system abstraction layers (OSALs),
while maintaining functional compatibility within the
rest of the cFS ecosystem. Since the DSA project is
concerned with software reuse and improvement in

future missions, cFS is well suited as a base frame-
work.

Figure 2: General Architecture of cFS
Mission Software26

DSA Flight Software Design

The Starling concept of operation calls for four Cube-
Sats to be operating in relatively close proximity (<
100km), allowing them to always be within crosslink
radio range of each other. This persistent but poten-
tially lossy link was a core design consideration for
the DSA software architecture, which can be broken
down into three primary design components:

• Intelligent Sensor — components that take raw
sensor input and translate them to reward val-
ues

• Autonomous Planner — takes the reward states
from itself and other spacecraft and plans the
next observations to process

• Communication Manager — manages commu-
nication from the spacecraft to other assets,
including other spacecraft and the ground

Figure 3 shows the applications that make up these
components and the specific hardware devices that
they interact with. The intelligent sensor component
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Fig. 1 With increases in scale, there are challenges that come from the raw numbers in the system, the potential
complexity, individual spacecraft complexity, heterogeneity of spacecraft, and the human-swarm interaction.
DSA is investigating the increase in the number of spacecraft, the collective complexity, and the human-swarm
interaction through both a flight test with four agents and a hardware-in-the-loop simulation with 100 agents.
Figure content originally introduced in the DARPA OFFSET program [20].

multipoint scientific measurements using two 1.5U CubeSat nanosatellites [22]. The Starling-1 mission will expand
on the NODES mission, and will demonstrate the creation of an ad-hoc network in low Earth Orbit using four 3U
CubeSat nanosatellites [23]. The Proba-3 mission is planned to launch in 2022 and includes a demonstration of
formation autonomy and robustness [24]. Recent work in addressing these challenges includes the development of novel
algorithms for planning and scheduling spacecraft operations autonomously and with minimal ground interaction. The
Scheduling Planning Routing Intersatellite Network Tool (SPRINT) plans the transfer of data through a distributed
network of satellites with crosslink capabilities [22]. The Distributed Spacecraft with Heuristic Intelligence to Enable
Logistical Decisions (D-SHIELD) schedules payload operations and data downlink for a constellation of Earth-observing
nanosatellites with the goal of maximizing science return [25].

D. Distributed Spacecraft Autonomy
In order to realize the promise of DSS, there are several key capability gaps that must first be addressed, ideally in a

flight environment. Figure 1 lists five measures originally introduced in the DARPA Offensive Swarm-Enabled Tactics
(OFFSET) program [20] that can be used to describe these gaps:

1) The number of members in the DSS.
2) The collective complexity of the organization, coordination, and communication behaviors that emerge from the

interactions between the DSS members.
3) The degree of effort required for an operator to direct the actions of the DSS, so-called human-swarm interaction.
4) The heterogeneity of the platforms and roles available to the members of the DSS.
5) The agent complexity of the individual members.
Of the five identified gaps, the most evident when reviewing successful DSS missions is the number of members.

Such missions tend to be in the low single digits for their members [3, 26, 27]. Current work in commercial satellite
internet mega-constellations indicate that the ability to field algorithms that can scale to many hundreds of members
will be the most relevant of the capability gaps to address. These mega-constellations are managable because the second

4

Figure 1: Challenges in Swarm Development22,23

uses the GPS application to unpack compressed No-
vatel messages. At the same time, the Total Electron
Count (TEC) application takes the L1 and L2 fre-
quencies and uses them to calculate the relative total
electron count. This count is then translated into a
decision reward, which is used by the Autonomous
Planner component. The Autonomous Planner com-
ponent comprises the cFS scheduler application and
the AUTO application. The scheduler provides a
trigger for plans to be generated. The AUTO ap-
plication takes in the rewards from across the DSS
to create an observation plan shared with the TEC
application for execution. Intelligent Sensing

Communication
Management

Autonomous 
Planning

Starling-DSA cFS Instance
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Figure 3: DSA Flight Application
Architecture

The communication manager comprises the crosslink
radios, virtual network interface, COMM application,
and cFS Data Store application. The COMM appli-
cation is built on top of DDS and acts as a translator
between the cFS middleware and the DDS middle-
ware. The operational network stack is displayed in
Figure 4.
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Figure 4: DSA Network Stack Diagram

The DSA software is designed to be “best-effort.”
The AUTO application will generate a plan with its
information, making the communication infrastruc-
ture a pivotal component to maintain consistency
and maximize performance. This is why the testing
of these interactions is so critical to the project’s
success.

Testing & Development

Flight software is tested at as many different levels
of abstraction as feasible, starting from unit testing
of individual functions of code, through integration
tests of larger components, up to complete testing
of the finished system through different scenarios.
Typically, as a project progresses, larger and more
complex components of a system are developed, and,
upon testing, these components are sometimes found
to be unsound or otherwise require design revisions.
By testing the interaction and integration of these
complex components at earlier points in development,
those necessary changes can occur while reducing im-
pact to a project’s schedule or budget.27 An increased
investment in early testing is one of the central re-
quirements for building complex flight software at
scale.28

Swarm Test Framework

Early into development of the first phase of the DSA
mission, a software testing framework based around
the concept of containerization was designed and
implemented, consisting of four containers intend-
ing to simulate each spacecraft of the flight mission.
Each container is populated by the cFS applications
and cFE compiled for the native architecture of the
developer’s machine, as well as all other runtime de-
pendencies for the flight software to function. The
ability to compile flight software for native execution

in the host architecture is a feature already built into
the cFS framework.26

The swarm test framework is used to perform func-
tional tests of the DSA applications at different levels
of abstraction and functionality. Tests range from
basic aliveness tests to more complicated measures of
behavior and performance requirements. The more
complicated tests are referred to in DSA as scenario
tests. Scenario tests are tied to project software re-
quirements and typically test applications close to
real operating conditions.

While the research presented in this paper is primar-
ily coupled with the development efforts of the DSA
project, similar work is also being done elsewhere
on developing test frameworks for simulating DSS
behavior through containers.29 This similar work
focuses on common elements of container-based ab-
stractions for spacecraft systems but also leverages
technology popular in cloud computing to perform
software-defined networking, metrics collection, and
network disruption and failure testing. Their appli-
cation under test is designed around a fixed constel-
lation network topology but still shares some design
elements of the DSA flight experiment.

The specific communication mechanisms used in the
DSA project are formed from a multi-layered net-
working stack. At the lowest level of abstraction, a
MANET is operating using the Better Approach To
Mobile Ad-Hoc Networking (B.A.T.M.A.N.) proto-
col. This tooling operates the ISL network interface
for each spacecraft at the ISO/OSI network layer 2,
which avoids a dependence on IP addresses.30 Above
the MANET, a publish-subscribe DDS middleware
transparently handles the distribution of data at
scale, abstracting away the process of routing traffic
to other spacecraft. Specifically, the RTI Connext
Micro DDS software package is used in the DSA
flight software. This package is specially designed for
resource-constrained environments.18,31

APPROACH

This section describes the approach used to test the
abilities and limits of containers as representative
simulated spacecraft. Both the DSA project and
generalized, scalable autonomous DSS are considered
as potential contexts for containerized testing. We
showcase an initial set of experiments designed to
quantify the expected performance limits of a generic
simulated DSS being developed in the context of a
communication-intensive distributed spacecraft mis-
sion.
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Although processing capability is an inherent lim-
iting factor of the performance of scalable systems,
the computational requirements of a scalable system
tend to be highly mission-dependent. Accordingly,
this experimental approach ignores the effects of com-
putational load and focuses primarily on a particular
component of autonomous DSS: the ISLs. Specifi-
cally, this paper evaluates the network performance
of multiple containers on a single host system, a con-
text which is realized in the DSA project software
test framework.

Container Virtualization

Virtualization technologies can be described by a va-
riety of mechanisms, but the central premise is that
certain portions of a computing system’s resources
are isolated and managed by an intermediary tool in
order to enhance system security, limit the execution
environment and available system resources, provide
a consistent and artificial interface for system soft-
ware, or some combination of each.32 While container
virtualization shares some similarity to conventional
virtualization (VMs), a fundamental difference is
that containers abstract and isolate the operating
system from the containerized applications while still
allowing access to the host operating system’s func-
tions and computing resources. The architectural
differences between containers and VMs are shown
in Figure 5.

Host Linux Kernel

Host Machine Host Linux Kernel

Host Machine

Lib A v3

Lib C v2

Config X
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Figure 5: Architectural Differences of VMs
and Containers

On Linux systems, container virtualization is imple-
mented through mechanisms built into the kernel,
such as cgroups and namespaces. These mechanisms
can give processes their own hierarchical visibility
or control of devices, memory, CPU, and network
interfaces.33 Multiple processes can run inside the
same container, and just like a normal kernel pro-
cess tree, exactly one process is at the “root” of a
container’s process tree. From the perspective of
the kernel, processes inside a container are running
alongside normal processes on a system and make the

same system calls on the same kernel, but the kernel
exposes different filesystems, process trees, network
interfaces, and other kernel resources to processes
inside a container.

This approach to virtualization avoids the need for
a host system to spend time translating a system
call from a virtual system or to maintain a virtual
state and set of emulated interfaces. In effect, then,
starting a container is no different than simply start-
ing any other process on a machine.33 This means
that, compared to traditional VMs, containers offer
superior image-generation speed and startup time,
while also exhibiting less processing and memory
overhead.32 This presents an opportunity for im-
provement upon the status quo, as historically, the
standard approach for flight software testing has been
to use machine virtualization (VMs).34

Container Runtime & Image Building

With many different container virtualization technolo-
gies being actively developed, there are ample combi-
nations of container builders and container runtimes
which support all the necessary features for isolating
spacecraft software from a host operating system.
Since container virtualization broadly works through
simple tooling on top of operating system features,
different container runtimes generally have negligi-
ble differences in runtime performance.35 Therefore,
without a compelling reason to compare the perfor-
mance of the runtimes themselves, the remaining
considerations in choice of a container runtime center
around features and compatibility.

The most widely used container runtime at the time
of writing, Docker, conforms to a standard specifi-
cation called the Open Container Initiative (OCI)
specification.35,36 This allows compliant tools to ben-
efit from being inter-operable with other tooling in
the container ecosystem.37 By using OCI-compliant
container tooling, DSA containers and containeriza-
tion tools can be more easily integrated or adapted
into other projects and experiments.

Another major component to containerization is the
process of building the filesystem image and execu-
tion configuration, which comprise what is known
as a container image. In considering the image-
building process, lower build times result in faster
iterative testing during development cycles and could
therefore have a positive effect on development pro-
ductivity. Different tooling exists for the image-
generation process, in addition to the default tool
in Docker, docker build. When comparing each of
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these tools, build times for small images vary by sig-
nificant margins, particularly if intermediary images
are produced.38 One of the fastest OCI specification-
compliant image builders is BuildKit, which is now
incorporated directly into the Docker software pack-
age.39

Given these considerations, as well as the rich tool-
ing and features of Docker software and its intrin-
sic compatibility with the OCI runtime and image
specifications, the DSA project uses the freely avail-
able Docker suite for container building and running.
Containers are built starting from an official Docker
image based on the same Linux distribution used
for compiling the flight software. This ensures ap-
plication binary interface (ABI) compatibility with
system libraries used to compile and run cFS software
(i.e. libc/libc++).

Container Networking & Orchestration

Many software packages exist to support the scalable
systems envisioned by the original designers of con-
tainer virtualization.35 These tools perform what is
referred to as orchestration, which is the process of
configuring and managing a collection of containers
through a unified system, rather than interacting
with each container individually. For this research,
the complexity of orchestration required is relatively
simple. Since orchestration tools are not in any criti-
cal performance path, the DSA project uses Docker
Compose, as it is already tightly bundled with the
Docker suite.40

Docker also provides a simplified interface for cre-
ating the virtual networks used by their container
runtime. The resulting virtual networks can support
different models of operation, giving container inter-
faces transparent access to a host’s network interfaces,
containers on other Docker runtimes, including on
different systems, or simply other designated net-
works on a single host.41 Containers can be added to
or removed from networks while running at any time,
offering a way to change network topology on-the-fly.
However, this offers only rudimentary network con-
trol, falling short of the more complicated disruptions
characteristic of a DSS swarm network.

The network configuration used in this research is the
bridge mode which forms a virtual network of every
container attached to it, allowing the host to send
and receive traffic through that network interface but
providing no explicit routes outside the network to
the containers. For the DSA test framework, Docker
Compose is used to specify the container runtime

configuration required for the full flight software, in-
cluding network device settings for the MANET and
DDS networking stack. Each simulated spacecraft is
assigned a unique network ID and placed on a net-
work bridged to the host, through which commands
and telemetry can pass.

Traffic Control

Another important feature of the swarm test frame-
work is the use of traffic shaping through the netem
(“Network Emulator”) kernel component. The Linux
kernel comes with a variety of quality-of-service and
network traffic shaping mechanisms by default. Netem
specifically provides emulation of packet loss, delay,
corruption, and other network failures. This mecha-
nism was introduced originally as part of the NetEm
tools.42 Netem allows individual Linux network in-
terfaces to behave more similarly to imperfect, real-
world interfaces such as those seen in extreme network
environments like autonomous DSS swarms. DSA
uses netem to artificially induce network failures and
change the apparent topology of the network of the
containers at any point during simulation.

Network Profiling

The DSA swarm test framework is capable of moni-
toring container network performance metrics while
tests are running. To accomplish this, network met-
rics are logged as reported directly to the kernel by
each network interface. These metrics are recorded by
the network drivers themselves. This kernel network
data is collected for all active container network inter-
faces and logged to a file associated with each run of
a scenario test in the swarm test framework.43

This tool is incorporated into the swarm test frame-
work scenario testing infrastructure such that, when
any scenario test is run, network performance is au-
tomatically saved alongside other telemetry and test
artifacts. The sampling frequency for this data is
configurable, but a high-resolution rate of 20 Hz was
chosen due its negligible CPU usage impact. This
mechanism allows developers to inspect burst traf-
fic speeds, evaluate expected application bandwidth,
and observe traffic patterns across containers. An
example of the network data collected is shown in
Figure 6. Here, the bitrate of traffic for each sample
period is shown for each spacecraft, in both trans-
mitted (TX) and received (RX) traffic.
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Figure 6: Container Network Traffic During
a Simulated Scenario Involving Four Fully

Connected Nodes

Network Benchmarking

To understand the theoretical bandwidth limits of the
swarm test framework, a series of benchmarks was
designed to examine the behavior of the network un-
der the heaviest possible load for a swarm of a given
size. Theoretically, the maximum load occurs when
all spacecraft are connected to each other and are
simultaneously attempting to transmit to every other
spacecraft, forming a fully connected bidirectional
network. These benchmarks were designed to mea-
sure per-connection bandwidth, evaluating how much
traffic each connection is capable of theoretically sup-
porting under a worst-case network load.

To measure these bandwidth limits, a lightweight net-
work speed-testing tool was chosen to both generate
artificial network traffic and measure it. iPerf3 is
a commonly-used tool for measuring unidirectional
throughput and other properties of a single client-
server network connection. It also supports both
TCP and UDP traffic, as well as bandwidth targets
and other, more advanced options.44 When running
in TCP mode, iPerf automatically tries to run at
maximum network speed. However, to test UDP
speed, the desired bandwidth must be specified, and
traffic which cannot be sent or delivered across the
virtual interface is dropped, which is reported as
packet loss. Therefore, to measure the bandwidth
of UDP traffic, we have to instead consider packet

loss at a variety of speeds and observe where loss
occurs.

Each container image for the benchmarks was built
starting from an official Ubuntu Linux 18.04 Docker
image, the operating system used in the DSA test
framework. The container image was then augmented
with the iperf3 Ubuntu package and an custom script
used for orchestration of each container’s iperf3 pro-
cesses. The script acts as an entry point to the con-
tainer and starts a parameterized number of server
instances as child processes at startup.

For each benchmark, the parameters of network size,
traffic type, and–for UDP tests–target bandwidth
are passed into a test script. This script starts the
specified number of containers n. Then inside each
container, the scripts runs n−1 instances of the iPerf3
process in server mode, followed by n− 1 instances
of the iPerf3 process in client mode, configured such
that each client connects to a server on every other
container. This configuration is visualized for n = 3
containers in Figure 7. Connection tests are run for
the default period of 10 seconds. These steps hap-
pen in immediate succession, with the intention that
tests start close enough in proximity and run over
a long enough duration that they can be considered
concurrent.

In the context of the DSA project, the most interest-
ing specific swarm size is n = 4, which reflects the
flight experiment hardware configuration. However,
the second-phase experiment of the DSA project in-
cludes up to n = 100 facsimile spacecraft on the
same network. While it would be ideal to simulate
simultaneous 100-spacecraft communication on a sin-
gle host, the actual communication patterns used by
the DSA network stack can use multicast communi-
cation and use broadcast patterns rather than fully
connected patterns. In an ideal multicast network of
size n, the effective network traffic needed to com-
municate one packet from each craft to every other
craft is simply n. The fully connected network size
with an equivalent amount of traffic would be ≈

√
n.

Assuming that the simulation network patterns are
imperfect but still somewhat optimized, being able to
handle 10 < n ≤ 20 reasonably captures the expected
network loads for the DSA experiments.
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RESULTS

The results are broken into sections demonstrating
the expected behavior of the test framework and
limits and the results of using the test framework to
assess the DSA software.

Test Framework Analysis

The testing framework needed to have its expected
performance limits quantified and verified to confirm
that the results of the software testing were from
the software performance, not the underlying testing
framework. To do this, the network testing was
performed as described in the earlier sections and
are reported here.

For the iPerf benchmarks, the test suites were run
inside an Ubuntu Linux 18.04 LTS virtual machine
with 16 dedicated Intel Xeon vCPU cores running
at 2.2GHz and 80 GiB of physical memory. While
the hardware configuration used was chosen out of
convenience, this paper assumes that the performance

of this machine is representative of the expected
performance from a development server available
to organizations with the resources to build DSMs
similar to those described in this paper.

TCP Bandwidth

For the first set of benchmarks, using TCP traffic
with no restriction on bandwidth, the total through-
put for each iPerf3 server process was recorded as
a single connection’s bandwidth. Note that this in-
cludes throughput in only one direction; data sent
in the opposite direction is considered a distinct con-
nection. From these data points, average bandwidth
for each connection was computed, and the lowest
effective bandwidth observed for a single connection
was also recorded for each benchmark. These tests
were performed in increasing scale for 2 ≤ n ≤ 25
containers.

As shown in Figure 8, the test framework sustained
a minimum throughput above 200 Mbps for each
connection in the system for all tested swarm sizes,
which supports the notion that this test framework
can support a high ceiling of network performance
and complexity. At a swarm size of n = 4, matching
the DSA flight configuration, the system sustained
a minimum of 12.9 Gbps on each connection, which
is far beyond the capabilities of the flight hardware
network devices, which are rated for only 50 Mbps
of traffic. Based on this observation, the test frame-
work has the potential to support the traffic capacity
needed for effective simulation fidelity of the DSA
flight mission.

2 4 6 8 10 12 14 16 18 20 22 24
100 Mbps

1 Gbps

10 Gbps

Number of Containers

TCP Throughput Distribution

Figure 8: TCP Throughput of
Unidirectional Connections

In the total throughput of all connections (total sys-
tem bandwidth) in Figure 9, there is a sharp rise in
system bandwidth between 2 ≤ n ≤ 4 followed by
a slow increase in bandwidth for swarm sizes n > 4.
This result somewhat matches expectations; given
that the experiment hardware has a fixed number of
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CPU cores, it was expected that the network perfor-
mance would improve as more CPU cores were used,
saturating once the number of processes communi-
cating exceeds the number of available CPU cores.
However, once the available cores are saturated, to-
tal system throughput should stay roughly the same
or decrease, yet this bottleneck was not observed.
System bandwidth appeared to steadily increase by
over a factor of two from the approximate saturation
point of n = 4 to the maximum swarm of n = 25.
This unexpected result suggests a weakness in this
experiment design, which is discussed in more detail
later.

2 4 6 8 10 12 14 16 18 20 22 24

0 Gbps
100 Gbps
200 Gbps
300 Gbps
400 Gbps
500 Gbps
600 Gbps

Number of Containers

Total System TCP Throughput

Figure 9: Total System TCP Throughput vs.
Scale

UDP Packet Loss

In the second set of experiments, using UDP traffic
at specified bit rates, the total packet loss from each
iPerf3 server process was recorded as a single connec-
tion’s loss percentage. As in the TCP experiments,
each recorded loss value pertains to only one direction
of the duplex communication paths between each con-
tainer. Unlike the TCP experiments, every network
scale size from 2 containers up through 32 containers
was tested, and for each network size, 10 different
target bit rates were selected heuristically across a
range of feasible network interface rates. The selected
bit rates span from 10 kbps to 10 Gbps.

As shown in Table 2, the test framework was capable
of sustained UDP traffic of up 1 Mbps without any
observed packet loss for all swarm sizes tested (n ≤
32). Sustained traffic of up to 10 Mbps was seen with
no observed packet loss for swarm sizes of n ≤ 15, but
only a minimum swarm size of n = 2 could support up
to 100 Mbps of sustained traffic with no packet loss.
As expected, the test framework could not sustain
the same network throughput with UDP traffic as
it could with TCP traffic. Even when operating at
lower target bit rates, the system dropped substantial
proportions of network traffic.

Table 2: Largest Network with No Packet
Loss per UDP Bit Rate

UDP Bit Rate
Largest Network
with No Packet Loss

10 kbps (≥ 32)
100 kbps (≥ 32)
500 kbps (≥ 32)
1 Mbps (≥ 32)
5 Mbps 31
10 Mbps 15
50 Mbps 2
100 Mbps 2

1 Gbps (n/a)
10 Gbps (n/a)

Although results of the TCP experiments suggest
that the virtual network interfaces could support the
quantity of traffic for at least 200 Mbps of traffic for
all swarm sizes, this test demonstrated total packet
loss for most connections at swarm sizes of n > 19
at 100 Mbps. This should not be surprising, how-
ever, due to the lack of synchronization mechanisms
in UDP traffic. Network interfaces communicating
over UDP will attempt to send packets even when
a receiving interface might be forced to drop the
traffic, unlike TCP, which can use congestion control
schemes to negotiate rate with the sender.42

Table 3: Maximum Packet Loss (%) vs.
Network Speed (bps) and Size

size 10k 100k 500k 1m 5m 10m 50m 100m 1g 10g
2 0 0 0 0 0 0 0 0 0.02 0.1

3 0 0 0 0 0 0 7.17 0.34 0.42 0.83

4 0 0 0 0 0 0 19.62 16.23 7.06 8.62

5 0 0 0 0 0 0 31.41 15.82 21.31 52.56

6 0 0 0 0 0 0 30.48 19.76 38.04 100

7 0 0 0 0 0 0 24.44 37.79 100 100

8 0 0 0 0 0 0 43.86 32.63 100 100

9 0 0 0 0 0 0 43.65 28.47 100 100

10 0 0 0 0 0 0 32.34 20.58 100 100

11 0 0 0 0 0 0 30.4 22.15 100 100

12 0 0 0 0 0 0 25.11 32.16 99.39 100

13 0 0 0 0 0 0 30.62 29.85 100 100

14 0 0 0 0 0 0.07 31.09 100 100 100

15 0 0 0 0 0 0 31.67 100 100 100

16 0 0 0 0 0 0.07 31.95 100 100 100

17 0 0 0 0 0 0.07 62.44 100 100 100

18 0 0 0 0 0 0.07 39.6 100 100 100

19 0 0 0 0 0 0.07 58.85 100 100 100

20 0 0 0 0 0.13 0.13 100 100 100 100

21 0 0 0 0 0 0.13 100 100 100 100

22 0 0 0 0 0 0.13 100 100 100 100

23 0 0 0 0 0 0.86 100 100 100 100

24 0 0 0 0 0 0.2 100 100 100 100

25 0 0 0 0 0.4 0.79 100 100 100 100

26 0 0 0 0 0 0.86 100 100 100 100

27 0 0 0 0 0 0.79 100 100 100 100

28 0 0 0 0 0.26 0.66 100 100 100 100

29 0 0 0 0 0 0.46 100 100 100 100

30 0 0 0 0.66 0 0.33 100 100 100 100

31 0 0 0 0.66 0 0.73 100 100 100 100

32 0 0 0 0 0.79 1.06 100 100 100 100

;
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Scenario Test Comparison

Fortunately, as shown in Table 3, all UDP traffic was
still delivered with maximum observed loss rates be-
low 20% for a swarm size of n = 4. The DDS protocol
implemented by the spacecraft networking stack for
DSA supports traffic delivery reliability through retry
mechanisms, and therefore some amount of packet
loss may be acceptable in the swarm test network,
even if the loss is not intentionally induced. Indeed,
when looking at the detailed scenario test network
data, average bit rates for each device stay well be-
low 1 Mbps. Swarm communication, as visualized
in Figure 6, tends to generate traffic only in bursts
rather than sustained data transfers like those used
in the benchmarks.

Furthermore, for the n = 4 swarm, the measured
network speed of an interface actually corresponds to
the sum of all outgoing connections from a node, so
a per-connection speed s corresponds to a s · (n− 1)
limit on interface speed. For n = 4, a hypothetical
10 Mbps per-connection limit would correspond to
an interface limit of 3 · 10 = 30 Mbps. These obser-
vations lend credibility to the notion that the swarm
test framework is capable of effectively handling the
amount of traffic generated.

Application Performance With Packet Loss

As mentioned above, the DSA applications are de-
signed to function in a non-trivial network topology
with restricted bandwidth and lossy connections. To
analyze the impact of network disturbances on appli-
cation effectiveness, we performed a scenario test on
a lossy network of n = 4 spacecraft. We measured the
proportion of simulated satellites which successfully
received the shared satellite planing states through-
out a scenario while introducing a uniform amount
of packet loss between each satellite. This can be
thought of as a loss of plan consistency between
members of the DSS. The resulting performance of
degradation of swarm collaboration is visualized in
Figure 10. As expected, the system is robust to small
amounts of packet loss, with performance quickly de-
grading after roughly 15% packet loss.

These results illustrate the expected performance
ranges on-orbit and help identify risk reduction plans.
Software developers can use this information to deter-
mine if the current software design and configuration
will be sufficient under various conditions. Further-
more, it allows for additional analysis to see if the
provided control settings can cover the expected op-
erational performance range.
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Figure 10: Degredation of Neighbor
Participation from Simulated Packet Loss

DISCUSSION

The results obtained from these tests add valuable
insight to the behavior and limitations of the swarm
test framework as well as guidance for other con-
tainerized DSS development. While several issues
emerged from the test design, these issues also pro-
vide insight to a category of simulation failures which
may affect testing of other DSS software. By evalu-
ating the behavior of the virtual network interfaces
intrinsic to containerized DSS testing, this research
is able to describe expected performance limits for
testing DSS in general, in addition to the system
designed in the DSA project.

When performing tests using TCP traffic, the ker-
nel is afforded control over how much data to send
at a time and can therefore shape traffic sent be-
tween different processes to manage congestion and
achieve higher throughput.42 This optimization is
not present for UDP traffic, leading to scenarios
where processes send large packets much faster than
they can be processed. When looking only at TCP
traffic, each connection was shown to sustain well
over 100 Mbps of traffic at every swarm size tested,
but this throughput was only observed with low loss
(< 20%) for networks sizes of n ≤ 13 using UDP
traffic.

This finding highlights an important consideration for
simulation of containerized DSS. In contrast to TCP
traffic, the performance of equivalently large swarm
networks (n ≥ 20) transmitting UDP traffic at speeds
≥ 50 Mbps showed packet losses so large that most
packets were either dropped or never transmitted
at all. The underlying network mechanisms of a
spacecraft in a DSS as implemented at the protocol
level can therefore have a significant effect on the
ability for the host system to deliver the traffic in
time. If an application designed for a DSS, such as
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an event-driven call-and-response across the swarm,
could produce a large (e.g. 100 Mbps) burst of traffic
across a significant portion of the swarm and the
traffic was not being delivered with any mechanisms
of traffic congestion in place, then the simulation
environment could introduce dropped packets.

As shown with small swarm sizes (n ≤ 4), if the
number of active connections is fewer than the num-
ber of logical CPU cores on the test machine, then
the containerized DSS simulation may still be able
to handle those large traffic bursts by matching the
transmission speed of data. On the other hand, if
the traffic produced by DSS applications is effectively
limited at the application level, burst traffic across
the entire swarm can be sustained effectively even
when the swarm size exceeds the number of available
CPU cores. The exact degree to which burst traffic
could be handled is not addressed in this paper, but it
is worthy of consideration for further research.

Memory & Network Interface Limitations

Through the course of this research, several key in-
sights stemming from the design of the experiment
brought to light other considerations for container-
ized testing of DSS. These issues potentially impacted
the scalability of the tests, particularly at higher net-
work throughput, and reflect limitations which may
not be seen in some real DSS. Each issue is discussed
in detail below.

First, each test connection required two iPerf3 pro-
cesses: one for the server and one for the client. For
a fully connected network, the number of processes
required to run an experiment increases quadrati-
cally as a function of network size, an effect which
introduces significant computational and memory
overhead. While an individual spacecraft designed as
part of a DSS may operate multiple communication
interfaces or channels simultaneously, this experiment
explicitly models network communication through
a multiprocessing lens. In contrast, missions involv-
ing lightweight flight software might only generate
network traffic on one network interface at a time,
meaning a much larger swarm size could be simulated
than was demonstrated here.

The second issue encountered in this experiment arose
as a consequence of modeling the worst-case, fully
connected network topology. Each iPerf3 test was
started sequentially, so an interval of time was present
between the first test and the last test starting. For
low numbers of connections, this interval was negli-
gible relative to the duration of the connection tests.

But for larger swarms, the interval grew significantly.
As a consequence, some connection tests were neces-
sarily running while others were waiting to be initi-
ated for at least some portion of the intended window
of simultaneous test, which in turn meant that the
duration of the tests was longer, and therefore the
true bandwidth sustained by the test system was
lower than indicated in Figures 8 and 9.

Swarm Test Framework Performance

When contextualized against the results of the iPerf3
benchmarks, the network load of the DSA experi-
ment in the swarm test framework is well within the
theoretical performance limits during simulated tests.
Even burst speeds observed on individual interfaces
were orders of magnitude below the maximum sus-
tained speeds obtained in the benchmarks. While the
network monitoring feature of the swarm test frame-
work was useful for contextualizing the benchmarks,
it also serves a practical function during regular de-
velopment by allowing developers to gauge what kind
of network strain changes might impose. Observing
network traffic patterns can also give insight to the
otherwise opaque layers of the network stack, which
in the case of the DSA network stack (shown in Fig-
ure 4) include DDS on top of B.A.T.M.A.N. mesh
networking.

CONCLUSION

Industry trends in spacecraft mission design are driv-
ing an increased focus on the development of au-
tonomous, distributed spacecraft systems. These
systems present a way to perform scientific and tech-
nical missions which are otherwise infeasible with
monolithic spacecraft architecture. With both DSS
design and the categories of missions enabled by DSS
comes inherent flight software complexity. Early test-
ing of these systems is critical because complex flight
software requires a proportionally higher investment
in software testing architecture to avoid delays and
excess development later on.

While it is straightforward to simulate a single space-
craft’s flight applications directly, DSS application
testing requires simulating multiple spacecraft in-
stances interacting over a network. Recent efforts in
the space industry have made headway on address-
ing this gap in early testing by using virtualization
technologies as part of the simulation environment
for flight software. We investigate a promising ap-
proach to this challenge: container virtualization,
which offers performant, lightweight abstraction of
an application from its operating system. However,
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very little literature currently exists on the limita-
tions and considerations relevant to using containers
as a platform for simulating DSS.

To better understand containerized DSS testing, this
research presents an experimental evaluation of con-
tainerized DSS performance by measuring the band-
width available in a containerized environment. The
results of this research showed that a containerized
DSS test framework can simulate the network behav-
ior of DSS with up to 32 containerized spacecraft
exchanging 1 Mbps of sustained UDP traffic across
the entire swarm without introducing artificial packet
loss. Additionally, the experiments demonstrated the
effects of traffic congestion control mechanisms on
network performance and highlight other important
considerations for containerized DSS test frameworks.
Finally, we were able to observe the detailed network
speeds of our containerized DSS test framework and
verify they did not approach or the exceed the limits
determined by the benchmarks. We also demon-
strated a basic measure of distributed application
robustness in the presence of packet loss.

FUTURE WORK

There are several promising future directions for this
work given the results of this research. Currently,
the swarm test framework primarily tests the swarm
configuration matching the starling experiment of 4
spacecraft, but it would be worth seeing how actual
swarm network speed and behavior changes as space-
craft are introduced. These tests could also be done
with more carefully-designed network disruptions and
spacecraft topologies.

At a more general level, the behavior of DDS across
virtual networks in particular is also worth specific
consideration. While literature exists evaluating
the relative performance of different implementa-
tions,21 understanding performance under the con-
text of publish-subscribe data delivery mechanisms
would yield a more precise point of comparison for
DSS which use those DDS for swarm communica-
tion. DDS middleware offers a powerful network
abstraction across distributed systems, which will
likely be of importance in other many other DSS
missions.

Finally, to further evaluate other categories of DSS,
these experiments could be modified to explicitly ana-
lyze broadcast communications, where data sent from
a spacecraft is delivered directly to the entire swarm
rather than repeated across each connection.
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