92 research outputs found

    Shape analysis on homogeneous spaces: a generalised SRVT framework

    Full text link
    Shape analysis is ubiquitous in problems of pattern and object recognition and has developed considerably in the last decade. The use of shapes is natural in applications where one wants to compare curves independently of their parametrisation. One computationally efficient approach to shape analysis is based on the Square Root Velocity Transform (SRVT). In this paper we propose a generalised SRVT framework for shapes on homogeneous manifolds. The method opens up for a variety of possibilities based on different choices of Lie group action and giving rise to different Riemannian metrics.Comment: 28 pages; 4 figures, 30 subfigures; notes for proceedings of the Abel Symposium 2016: "Computation and Combinatorics in Dynamics, Stochastics and Control". v3: amended the text to improve readability and clarify some points; updated and added some references; added pseudocode for the dynamic programming algorithm used. The main results remain unchange

    Deep learning as optimal control problems

    Get PDF
    We briefly review recent work where deep learning neural networks have been interpreted as discretisations of an optimal control problem subject to an ordinary differential equation constraint. We report here new preliminary experiments with implicit symplectic Runge-Kutta methods. In this paper, we discuss ongoing and future research in this area

    Deep learning as optimal control problems: Models and numerical methods

    Get PDF
    We consider recent work of Haber and Ruthotto 2017 and Chang et al. 2018, where deep learning neural networks have been interpreted as discretisations of an optimal control problem subject to an ordinary differential equation constraint. We review the first order conditions for optimality, and the conditions ensuring optimality after discretisation. This leads to a class of algorithms for solving the discrete optimal control problem which guarantee that the corresponding discrete necessary conditions for optimality are fulfilled. The differential equation setting lends itself to learning additional parameters such as the time discretisation. We explore this extension alongside natural constraints (e.g. time steps lie in a simplex). We compare these deep learning algorithms numerically in terms of induced flow and generalisation ability

    Using discrete Darboux polynomials to detect and determine preserved measures and integrals of rational maps

    Full text link
    In this Letter we propose a systematic approach for detecting and calculating preserved measures and integrals of a rational map. The approach is based on the use of cofactors and Discrete Darboux Polynomials and relies on the use of symbolic algebra tools. Given sufficient computing power, all rational preserved integrals can be found. We show, in two examples, how to use this method to detect and determine preserved measures and integrals of the considered rational maps.Comment: 8 pages, 1 Figur

    Structure-preserving deep learning

    Get PDF
    Over the past few years, deep learning has risen to the foreground as a topic of massive interest, mainly as a result of successes obtained in solving large-scale image processing tasks. There are multiple challenging mathematical problems involved in applying deep learning: most deep learning methods require the solution of hard optimisation problems, and a good understanding of the tradeoff between computational effort, amount of data and model complexity is required to successfully design a deep learning approach for a given problem. A large amount of progress made in deep learning has been based on heuristic explorations, but there is a growing effort to mathematically understand the structure in existing deep learning methods and to systematically design new deep learning methods to preserve certain types of structure in deep learning. In this article, we review a number of these directions: some deep neural networks can be understood as discretisations of dynamical systems, neural networks can be designed to have desirable properties such as invertibility or group equivariance, and new algorithmic frameworks based on conformal Hamiltonian systems and Riemannian manifolds to solve the optimisation problems have been proposed. We conclude our review of each of these topics by discussing some open problems that we consider to be interesting directions for future research

    Probing magnetic fields with multi-frequency polarized synchrotron emission

    Get PDF
    We investigate the problem of probing the local spatial structure of the magnetic field of the interstellar medium using multi-frequency polarized maps of the synchrotron emission at radio wavelengths. We focus in this paper on the three-dimensional reconstruction of the largest scales of the magnetic field, relying on the internal depolarization (due to differential Faraday rotation) of the emitting medium as a function of electromagnetic frequency. We argue that multi-band spectroscopy in the radio wavelengths, developed in the context of high-redshift extragalactic HI lines, can be a very useful probe of the 3D magnetic field structure of our Galaxy when combined with a Maximum A Posteriori reconstruction technique. When starting from a fair approximation of the magnetic field, we are able to recover the true one by using a linearized version of the corresponding inverse problem. The spectral analysis of this problem allows us to specify the best sampling strategy in electromagnetic frequency and predicts a spatially anisotropic distribution of posterior errors. The reconstruction method is illustrated for reference fields extracted from realistic magneto-hydrodynamical simulations

    Exact Analytic Solution for the Rotation of a Rigid Body having Spherical Ellipsoid of Inertia and Subjected to a Constant Torque

    Get PDF
    The exact analytic solution is introduced for the rotational motion of a rigid body having three equal principal moments of inertia and subjected to an external torque vector which is constant for an observer fixed with the body, and to arbitrary initial angular velocity. In the paper a parametrization of the rotation by three complex numbers is used. In particular, the rows of the rotation matrix are seen as elements of the unit sphere and projected, by stereographic projection, onto points on the complex plane. In this representation, the kinematic differential equation reduces to an equation of Riccati type, which is solved through appropriate choices of substitutions, thereby yielding an analytic solution in terms of confluent hypergeometric functions. The rotation matrix is recovered from the three complex rotation variables by inverse stereographic map. The results of a numerical experiment confirming the exactness of the analytic solution are reported. The newly found analytic solution is valid for any motion time length and rotation amplitude. The present paper adds a further element to the small set of special cases for which an exact solution of the rotational motion of a rigid body exists.Comment: "Errata Corridge Postprint" In particular: typos present in Eq. 28 of the Journal version are HERE correcte

    Exact Analytic Solutions for the Rotation of an Axially Symmetric Rigid Body Subjected to a Constant Torque

    Get PDF
    New exact analytic solutions are introduced for the rotational motion of a rigid body having two equal principal moments of inertia and subjected to an external torque which is constant in magnitude. In particular, the solutions are obtained for the following cases: (1) Torque parallel to the symmetry axis and arbitrary initial angular velocity; (2) Torque perpendicular to the symmetry axis and such that the torque is rotating at a constant rate about the symmetry axis, and arbitrary initial angular velocity; (3) Torque and initial angular velocity perpendicular to the symmetry axis, with the torque being fixed with the body. In addition to the solutions for these three forced cases, an original solution is introduced for the case of torque-free motion, which is simpler than the classical solution as regards its derivation and uses the rotation matrix in order to describe the body orientation. This paper builds upon the recently discovered exact solution for the motion of a rigid body with a spherical ellipsoid of inertia. In particular, by following Hestenes' theory, the rotational motion of an axially symmetric rigid body is seen at any instant in time as the combination of the motion of a "virtual" spherical body with respect to the inertial frame and the motion of the axially symmetric body with respect to this "virtual" body. The kinematic solutions are presented in terms of the rotation matrix. The newly found exact analytic solutions are valid for any motion time length and rotation amplitude. The present paper adds further elements to the small set of special cases for which an exact solution of the rotational motion of a rigid body exists.Comment: "Errata Corridge Postprint" version of the journal paper. The following typos present in the Journal version are HERE corrected: 1) Definition of \beta, before Eq. 18; 2) sign in the statement of Theorem 3; 3) Sign in Eq. 53; 4)Item r_0 in Eq. 58; 5) Item R_{SN}(0) in Eq. 6

    Differential Geometry applied to Acoustics : Non Linear Propagation in Reissner Beams

    Full text link
    Although acoustics is one of the disciplines of mechanics, its "geometrization" is still limited to a few areas. As shown in the work on nonlinear propagation in Reissner beams, it seems that an interpretation of the theories of acoustics through the concepts of differential geometry can help to address the non-linear phenomena in their intrinsic qualities. This results in a field of research aimed at establishing and solving dynamic models purged of any artificial nonlinearity by taking advantage of symmetry properties underlying the use of Lie groups. The geometric constructions needed for reduction are presented in the context of the "covariant" approach.Comment: Submitted to GSI2013 - Geometric Science of Informatio
    • …
    corecore