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1. INTRODUCTION

This work is inspired by the interpretation of deep learning
algorithms as discrete optimal control problems subject to
an ordinary differential equation (ODE) constraint, see E
(2017), Haber et al. (2018). A number of new deep learning
architectures can be generated adopting this point of view,
Li et al. (2018), Chang et al. (2018), Chen et al. (2018),
Ruthotto et al. (2018), Gholami et al. (2019), Zhang et al.
(2019). In Benning et al. (2019), we have clarified the
connection of general classical Runge-Kutta discretizations
of the optimal control ODEs with the deep learning archi-
tectures of ResNet type. Discretizing the ODEs with sym-
plectic, partitioned Runge-Kutta methods leads to explicit
formulae for the evaluation of the gradients in the gradient
descent iterations. The differential equation setting lends
itself to learning additional parameters such as the time
discretisation. We compare these deep learning algorithms
numerically in terms of induced flow and generalisation
ability.

� MB acknowledges support from the Leverhulme Trust Early Ca-
reer Fellowship ECF-2016-611 ’Learning from mistakes: a super-
vised feedback-loop for imaging applications’. CBS acknowledges
support from the Leverhulme Trust project on Breaking the non-
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European Union Horizon 2020 research and innovation programmes
under the Marie Skodowska-Curie grant agreement No. 777826 No-
MADS and No. 691070 CHiPS, the Cantab Capital Institute for
the Mathematics of Information and the Alan Turing Institute. We
gratefully acknowledge the support of NVIDIA Corporation with
the donation of a Quadro P6000 and a Titan Xp GPU used for this
research. EC and BO thank the SPIRIT project (No. 231632) under
the Research Council of Norway FRIPRO funding scheme. This work
was supported by EPSRC grant No. EP/K032208/1.

An artificial neural network is a network of processing
units (neurons) each taking inputs and producing outputs.
Let y[in] ∈ D denote one sample of the input data, then
the corresponding output y[out] is obtained by applying
a composition of maps φ� each depending on parameters
U [�]:

y[out] = φN◦· · ·◦φ�◦· · ·◦φ1 (y
[in]), φ�(y

[�]) = φ(y[�], U [�]).

Each map φ� corresponds to a layer of the neural network.
Learning is the process consisting on establishing an ap-
propriate cost function on the network, e.g.∑

y[in]∈D

J(y[out]),

and minimimising this cost function with respect to the
parameters U [1], . . . , U [N ]. This is done in practice by a
gradient descent iteration method. Deep neural networks
are those with a large number of layers. Increasing the
number of layers leads to a larger number of parameters
and should correspond to increased predictive power of
the neural network. However it is well known that adding
layers can lead to networks that are harder to train. The
training and validation errors do not always decrease as the
number of layers N increases. Deep learning algorithms
can suffer from vanishing or exploding gradients in the
stochastic gradient descent algorithms which are used to
solve the optimisation problem. It is reasonable to think
that this problematic behaviour of the algorithms has to
do with questions of stability and convergence asN goes to
infinity. It was observed in He et al. (2016) that the ResNet
architecture is more suitable to deep learning compared
to other architectures. In the same paper experiments
with the ResNet architecture are reported with a large
number of layers showing that indeed ResNet can be
trained and gives improved training and validation errors
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[�]) = φ(y[�], U [�]).

Each map φ� corresponds to a layer of the neural network.
Learning is the process consisting on establishing an ap-
propriate cost function on the network, e.g.∑

y[in]∈D

J(y[out]),

and minimimising this cost function with respect to the
parameters U [1], . . . , U [N ]. This is done in practice by a
gradient descent iteration method. Deep neural networks
are those with a large number of layers. Increasing the
number of layers leads to a larger number of parameters
and should correspond to increased predictive power of
the neural network. However it is well known that adding
layers can lead to networks that are harder to train. The
training and validation errors do not always decrease as the
number of layers N increases. Deep learning algorithms
can suffer from vanishing or exploding gradients in the
stochastic gradient descent algorithms which are used to
solve the optimisation problem. It is reasonable to think
that this problematic behaviour of the algorithms has to
do with questions of stability and convergence asN goes to
infinity. It was observed in He et al. (2016) that the ResNet
architecture is more suitable to deep learning compared
to other architectures. In the same paper experiments
with the ResNet architecture are reported with a large
number of layers showing that indeed ResNet can be
trained and gives improved training and validation errors

Deep learning as optimal control problems �

Martin Benning ∗ Elena Celledoni ∗∗ Matthias J. Ehrhardt ∗∗∗

Brynjulf Owren ∗∗∗∗ Carola-Bibiane Schönlieb †

∗ School of Mathematical Sciences, Queen Mary University of London.
London E1 4NS, UK (m.benning@qmul.ac.uk)

∗∗ Department of Mathematical Sciences, NTNU, 7491 Trondheim,
Norway (e-mail: elena.celledoni@ntnu.no)

∗∗∗ Institute for Mathematical Innovation, University of Bath, Bath
BA2 7JU, UK (e-mail: me549@bath.ac.uk)

∗∗∗∗ Department of Mathematical Sciences, NTNU, 7491 Trondheim,
Norway (e-mail: brynjulf.owren@ntnu.no)

† Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge CB3 0WA,

UK(e-mail:cbs31@cam.ac.uk)

Abstract: We briefly review recent work where deep learning neural networks have been
interpreted as discretisations of an optimal control problem subject to an ordinary differential
equation constraint. We report here new preliminary experiments with implicit symplectic
Runge-Kutta methods. In this paper, we discuss ongoing and future research in this area.

Keywords: Deep Neural Networks, ResNet, Optimal Control.

1. INTRODUCTION

This work is inspired by the interpretation of deep learning
algorithms as discrete optimal control problems subject to
an ordinary differential equation (ODE) constraint, see E
(2017), Haber et al. (2018). A number of new deep learning
architectures can be generated adopting this point of view,
Li et al. (2018), Chang et al. (2018), Chen et al. (2018),
Ruthotto et al. (2018), Gholami et al. (2019), Zhang et al.
(2019). In Benning et al. (2019), we have clarified the
connection of general classical Runge-Kutta discretizations
of the optimal control ODEs with the deep learning archi-
tectures of ResNet type. Discretizing the ODEs with sym-
plectic, partitioned Runge-Kutta methods leads to explicit
formulae for the evaluation of the gradients in the gradient
descent iterations. The differential equation setting lends
itself to learning additional parameters such as the time
discretisation. We compare these deep learning algorithms
numerically in terms of induced flow and generalisation
ability.

� MB acknowledges support from the Leverhulme Trust Early Ca-
reer Fellowship ECF-2016-611 ’Learning from mistakes: a super-
vised feedback-loop for imaging applications’. CBS acknowledges
support from the Leverhulme Trust project on Breaking the non-
convexity barrier, the Philip Leverhulme Prize, the EPSRC grant
No. EP/M00483X/1, the EPSRC Centre No. EP/N014588/1, the
European Union Horizon 2020 research and innovation programmes
under the Marie Skodowska-Curie grant agreement No. 777826 No-
MADS and No. 691070 CHiPS, the Cantab Capital Institute for
the Mathematics of Information and the Alan Turing Institute. We
gratefully acknowledge the support of NVIDIA Corporation with
the donation of a Quadro P6000 and a Titan Xp GPU used for this
research. EC and BO thank the SPIRIT project (No. 231632) under
the Research Council of Norway FRIPRO funding scheme. This work
was supported by EPSRC grant No. EP/K032208/1.

An artificial neural network is a network of processing
units (neurons) each taking inputs and producing outputs.
Let y[in] ∈ D denote one sample of the input data, then
the corresponding output y[out] is obtained by applying
a composition of maps φ� each depending on parameters
U [�]:

y[out] = φN◦· · ·◦φ�◦· · ·◦φ1 (y
[in]), φ�(y

[�]) = φ(y[�], U [�]).

Each map φ� corresponds to a layer of the neural network.
Learning is the process consisting on establishing an ap-
propriate cost function on the network, e.g.∑

y[in]∈D

J(y[out]),

and minimimising this cost function with respect to the
parameters U [1], . . . , U [N ]. This is done in practice by a
gradient descent iteration method. Deep neural networks
are those with a large number of layers. Increasing the
number of layers leads to a larger number of parameters
and should correspond to increased predictive power of
the neural network. However it is well known that adding
layers can lead to networks that are harder to train. The
training and validation errors do not always decrease as the
number of layers N increases. Deep learning algorithms
can suffer from vanishing or exploding gradients in the
stochastic gradient descent algorithms which are used to
solve the optimisation problem. It is reasonable to think
that this problematic behaviour of the algorithms has to
do with questions of stability and convergence asN goes to
infinity. It was observed in He et al. (2016) that the ResNet
architecture is more suitable to deep learning compared
to other architectures. In the same paper experiments
with the ResNet architecture are reported with a large
number of layers showing that indeed ResNet can be
trained and gives improved training and validation errors

Deep learning as optimal control problems �

Martin Benning ∗ Elena Celledoni ∗∗ Matthias J. Ehrhardt ∗∗∗

Brynjulf Owren ∗∗∗∗ Carola-Bibiane Schönlieb †

∗ School of Mathematical Sciences, Queen Mary University of London.
London E1 4NS, UK (m.benning@qmul.ac.uk)

∗∗ Department of Mathematical Sciences, NTNU, 7491 Trondheim,
Norway (e-mail: elena.celledoni@ntnu.no)

∗∗∗ Institute for Mathematical Innovation, University of Bath, Bath
BA2 7JU, UK (e-mail: me549@bath.ac.uk)

∗∗∗∗ Department of Mathematical Sciences, NTNU, 7491 Trondheim,
Norway (e-mail: brynjulf.owren@ntnu.no)

† Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge CB3 0WA,

UK(e-mail:cbs31@cam.ac.uk)

Abstract: We briefly review recent work where deep learning neural networks have been
interpreted as discretisations of an optimal control problem subject to an ordinary differential
equation constraint. We report here new preliminary experiments with implicit symplectic
Runge-Kutta methods. In this paper, we discuss ongoing and future research in this area.

Keywords: Deep Neural Networks, ResNet, Optimal Control.

1. INTRODUCTION

This work is inspired by the interpretation of deep learning
algorithms as discrete optimal control problems subject to
an ordinary differential equation (ODE) constraint, see E
(2017), Haber et al. (2018). A number of new deep learning
architectures can be generated adopting this point of view,
Li et al. (2018), Chang et al. (2018), Chen et al. (2018),
Ruthotto et al. (2018), Gholami et al. (2019), Zhang et al.
(2019). In Benning et al. (2019), we have clarified the
connection of general classical Runge-Kutta discretizations
of the optimal control ODEs with the deep learning archi-
tectures of ResNet type. Discretizing the ODEs with sym-
plectic, partitioned Runge-Kutta methods leads to explicit
formulae for the evaluation of the gradients in the gradient
descent iterations. The differential equation setting lends
itself to learning additional parameters such as the time
discretisation. We compare these deep learning algorithms
numerically in terms of induced flow and generalisation
ability.

� MB acknowledges support from the Leverhulme Trust Early Ca-
reer Fellowship ECF-2016-611 ’Learning from mistakes: a super-
vised feedback-loop for imaging applications’. CBS acknowledges
support from the Leverhulme Trust project on Breaking the non-
convexity barrier, the Philip Leverhulme Prize, the EPSRC grant
No. EP/M00483X/1, the EPSRC Centre No. EP/N014588/1, the
European Union Horizon 2020 research and innovation programmes
under the Marie Skodowska-Curie grant agreement No. 777826 No-
MADS and No. 691070 CHiPS, the Cantab Capital Institute for
the Mathematics of Information and the Alan Turing Institute. We
gratefully acknowledge the support of NVIDIA Corporation with
the donation of a Quadro P6000 and a Titan Xp GPU used for this
research. EC and BO thank the SPIRIT project (No. 231632) under
the Research Council of Norway FRIPRO funding scheme. This work
was supported by EPSRC grant No. EP/K032208/1.

An artificial neural network is a network of processing
units (neurons) each taking inputs and producing outputs.
Let y[in] ∈ D denote one sample of the input data, then
the corresponding output y[out] is obtained by applying
a composition of maps φ� each depending on parameters
U [�]:

y[out] = φN◦· · ·◦φ�◦· · ·◦φ1 (y
[in]), φ�(y

[�]) = φ(y[�], U [�]).

Each map φ� corresponds to a layer of the neural network.
Learning is the process consisting on establishing an ap-
propriate cost function on the network, e.g.∑

y[in]∈D

J(y[out]),

and minimimising this cost function with respect to the
parameters U [1], . . . , U [N ]. This is done in practice by a
gradient descent iteration method. Deep neural networks
are those with a large number of layers. Increasing the
number of layers leads to a larger number of parameters
and should correspond to increased predictive power of
the neural network. However it is well known that adding
layers can lead to networks that are harder to train. The
training and validation errors do not always decrease as the
number of layers N increases. Deep learning algorithms
can suffer from vanishing or exploding gradients in the
stochastic gradient descent algorithms which are used to
solve the optimisation problem. It is reasonable to think
that this problematic behaviour of the algorithms has to
do with questions of stability and convergence asN goes to
infinity. It was observed in He et al. (2016) that the ResNet
architecture is more suitable to deep learning compared
to other architectures. In the same paper experiments
with the ResNet architecture are reported with a large
number of layers showing that indeed ResNet can be
trained and gives improved training and validation errors

Deep learning as optimal control problems �

Martin Benning ∗ Elena Celledoni ∗∗ Matthias J. Ehrhardt ∗∗∗

Brynjulf Owren ∗∗∗∗ Carola-Bibiane Schönlieb †

∗ School of Mathematical Sciences, Queen Mary University of London.
London E1 4NS, UK (m.benning@qmul.ac.uk)

∗∗ Department of Mathematical Sciences, NTNU, 7491 Trondheim,
Norway (e-mail: elena.celledoni@ntnu.no)

∗∗∗ Institute for Mathematical Innovation, University of Bath, Bath
BA2 7JU, UK (e-mail: me549@bath.ac.uk)

∗∗∗∗ Department of Mathematical Sciences, NTNU, 7491 Trondheim,
Norway (e-mail: brynjulf.owren@ntnu.no)

† Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge CB3 0WA,

UK(e-mail:cbs31@cam.ac.uk)

Abstract: We briefly review recent work where deep learning neural networks have been
interpreted as discretisations of an optimal control problem subject to an ordinary differential
equation constraint. We report here new preliminary experiments with implicit symplectic
Runge-Kutta methods. In this paper, we discuss ongoing and future research in this area.

Keywords: Deep Neural Networks, ResNet, Optimal Control.

1. INTRODUCTION

This work is inspired by the interpretation of deep learning
algorithms as discrete optimal control problems subject to
an ordinary differential equation (ODE) constraint, see E
(2017), Haber et al. (2018). A number of new deep learning
architectures can be generated adopting this point of view,
Li et al. (2018), Chang et al. (2018), Chen et al. (2018),
Ruthotto et al. (2018), Gholami et al. (2019), Zhang et al.
(2019). In Benning et al. (2019), we have clarified the
connection of general classical Runge-Kutta discretizations
of the optimal control ODEs with the deep learning archi-
tectures of ResNet type. Discretizing the ODEs with sym-
plectic, partitioned Runge-Kutta methods leads to explicit
formulae for the evaluation of the gradients in the gradient
descent iterations. The differential equation setting lends
itself to learning additional parameters such as the time
discretisation. We compare these deep learning algorithms
numerically in terms of induced flow and generalisation
ability.

� MB acknowledges support from the Leverhulme Trust Early Ca-
reer Fellowship ECF-2016-611 ’Learning from mistakes: a super-
vised feedback-loop for imaging applications’. CBS acknowledges
support from the Leverhulme Trust project on Breaking the non-
convexity barrier, the Philip Leverhulme Prize, the EPSRC grant
No. EP/M00483X/1, the EPSRC Centre No. EP/N014588/1, the
European Union Horizon 2020 research and innovation programmes
under the Marie Skodowska-Curie grant agreement No. 777826 No-
MADS and No. 691070 CHiPS, the Cantab Capital Institute for
the Mathematics of Information and the Alan Turing Institute. We
gratefully acknowledge the support of NVIDIA Corporation with
the donation of a Quadro P6000 and a Titan Xp GPU used for this
research. EC and BO thank the SPIRIT project (No. 231632) under
the Research Council of Norway FRIPRO funding scheme. This work
was supported by EPSRC grant No. EP/K032208/1.

An artificial neural network is a network of processing
units (neurons) each taking inputs and producing outputs.
Let y[in] ∈ D denote one sample of the input data, then
the corresponding output y[out] is obtained by applying
a composition of maps φ� each depending on parameters
U [�]:

y[out] = φN◦· · ·◦φ�◦· · ·◦φ1 (y
[in]), φ�(y

[�]) = φ(y[�], U [�]).

Each map φ� corresponds to a layer of the neural network.
Learning is the process consisting on establishing an ap-
propriate cost function on the network, e.g.∑

y[in]∈D

J(y[out]),

and minimimising this cost function with respect to the
parameters U [1], . . . , U [N ]. This is done in practice by a
gradient descent iteration method. Deep neural networks
are those with a large number of layers. Increasing the
number of layers leads to a larger number of parameters
and should correspond to increased predictive power of
the neural network. However it is well known that adding
layers can lead to networks that are harder to train. The
training and validation errors do not always decrease as the
number of layers N increases. Deep learning algorithms
can suffer from vanishing or exploding gradients in the
stochastic gradient descent algorithms which are used to
solve the optimisation problem. It is reasonable to think
that this problematic behaviour of the algorithms has to
do with questions of stability and convergence asN goes to
infinity. It was observed in He et al. (2016) that the ResNet
architecture is more suitable to deep learning compared
to other architectures. In the same paper experiments
with the ResNet architecture are reported with a large
number of layers showing that indeed ResNet can be
trained and gives improved training and validation errors

Deep learning as optimal control problems �

Martin Benning ∗ Elena Celledoni ∗∗ Matthias J. Ehrhardt ∗∗∗

Brynjulf Owren ∗∗∗∗ Carola-Bibiane Schönlieb †

∗ School of Mathematical Sciences, Queen Mary University of London.
London E1 4NS, UK (m.benning@qmul.ac.uk)

∗∗ Department of Mathematical Sciences, NTNU, 7491 Trondheim,
Norway (e-mail: elena.celledoni@ntnu.no)

∗∗∗ Institute for Mathematical Innovation, University of Bath, Bath
BA2 7JU, UK (e-mail: me549@bath.ac.uk)

∗∗∗∗ Department of Mathematical Sciences, NTNU, 7491 Trondheim,
Norway (e-mail: brynjulf.owren@ntnu.no)

† Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge CB3 0WA,

UK(e-mail:cbs31@cam.ac.uk)

Abstract: We briefly review recent work where deep learning neural networks have been
interpreted as discretisations of an optimal control problem subject to an ordinary differential
equation constraint. We report here new preliminary experiments with implicit symplectic
Runge-Kutta methods. In this paper, we discuss ongoing and future research in this area.

Keywords: Deep Neural Networks, ResNet, Optimal Control.

1. INTRODUCTION

This work is inspired by the interpretation of deep learning
algorithms as discrete optimal control problems subject to
an ordinary differential equation (ODE) constraint, see E
(2017), Haber et al. (2018). A number of new deep learning
architectures can be generated adopting this point of view,
Li et al. (2018), Chang et al. (2018), Chen et al. (2018),
Ruthotto et al. (2018), Gholami et al. (2019), Zhang et al.
(2019). In Benning et al. (2019), we have clarified the
connection of general classical Runge-Kutta discretizations
of the optimal control ODEs with the deep learning archi-
tectures of ResNet type. Discretizing the ODEs with sym-
plectic, partitioned Runge-Kutta methods leads to explicit
formulae for the evaluation of the gradients in the gradient
descent iterations. The differential equation setting lends
itself to learning additional parameters such as the time
discretisation. We compare these deep learning algorithms
numerically in terms of induced flow and generalisation
ability.

� MB acknowledges support from the Leverhulme Trust Early Ca-
reer Fellowship ECF-2016-611 ’Learning from mistakes: a super-
vised feedback-loop for imaging applications’. CBS acknowledges
support from the Leverhulme Trust project on Breaking the non-
convexity barrier, the Philip Leverhulme Prize, the EPSRC grant
No. EP/M00483X/1, the EPSRC Centre No. EP/N014588/1, the
European Union Horizon 2020 research and innovation programmes
under the Marie Skodowska-Curie grant agreement No. 777826 No-
MADS and No. 691070 CHiPS, the Cantab Capital Institute for
the Mathematics of Information and the Alan Turing Institute. We
gratefully acknowledge the support of NVIDIA Corporation with
the donation of a Quadro P6000 and a Titan Xp GPU used for this
research. EC and BO thank the SPIRIT project (No. 231632) under
the Research Council of Norway FRIPRO funding scheme. This work
was supported by EPSRC grant No. EP/K032208/1.

An artificial neural network is a network of processing
units (neurons) each taking inputs and producing outputs.
Let y[in] ∈ D denote one sample of the input data, then
the corresponding output y[out] is obtained by applying
a composition of maps φ� each depending on parameters
U [�]:

y[out] = φN◦· · ·◦φ�◦· · ·◦φ1 (y
[in]), φ�(y

[�]) = φ(y[�], U [�]).

Each map φ� corresponds to a layer of the neural network.
Learning is the process consisting on establishing an ap-
propriate cost function on the network, e.g.∑

y[in]∈D

J(y[out]),

and minimimising this cost function with respect to the
parameters U [1], . . . , U [N ]. This is done in practice by a
gradient descent iteration method. Deep neural networks
are those with a large number of layers. Increasing the
number of layers leads to a larger number of parameters
and should correspond to increased predictive power of
the neural network. However it is well known that adding
layers can lead to networks that are harder to train. The
training and validation errors do not always decrease as the
number of layers N increases. Deep learning algorithms
can suffer from vanishing or exploding gradients in the
stochastic gradient descent algorithms which are used to
solve the optimisation problem. It is reasonable to think
that this problematic behaviour of the algorithms has to
do with questions of stability and convergence asN goes to
infinity. It was observed in He et al. (2016) that the ResNet
architecture is more suitable to deep learning compared
to other architectures. In the same paper experiments
with the ResNet architecture are reported with a large
number of layers showing that indeed ResNet can be
trained and gives improved training and validation errors

Deep learning as optimal control problems �

Martin Benning ∗ Elena Celledoni ∗∗ Matthias J. Ehrhardt ∗∗∗

Brynjulf Owren ∗∗∗∗ Carola-Bibiane Schönlieb †

∗ School of Mathematical Sciences, Queen Mary University of London.
London E1 4NS, UK (m.benning@qmul.ac.uk)

∗∗ Department of Mathematical Sciences, NTNU, 7491 Trondheim,
Norway (e-mail: elena.celledoni@ntnu.no)

∗∗∗ Institute for Mathematical Innovation, University of Bath, Bath
BA2 7JU, UK (e-mail: me549@bath.ac.uk)

∗∗∗∗ Department of Mathematical Sciences, NTNU, 7491 Trondheim,
Norway (e-mail: brynjulf.owren@ntnu.no)

† Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge CB3 0WA,

UK(e-mail:cbs31@cam.ac.uk)

Abstract: We briefly review recent work where deep learning neural networks have been
interpreted as discretisations of an optimal control problem subject to an ordinary differential
equation constraint. We report here new preliminary experiments with implicit symplectic
Runge-Kutta methods. In this paper, we discuss ongoing and future research in this area.

Keywords: Deep Neural Networks, ResNet, Optimal Control.

1. INTRODUCTION

This work is inspired by the interpretation of deep learning
algorithms as discrete optimal control problems subject to
an ordinary differential equation (ODE) constraint, see E
(2017), Haber et al. (2018). A number of new deep learning
architectures can be generated adopting this point of view,
Li et al. (2018), Chang et al. (2018), Chen et al. (2018),
Ruthotto et al. (2018), Gholami et al. (2019), Zhang et al.
(2019). In Benning et al. (2019), we have clarified the
connection of general classical Runge-Kutta discretizations
of the optimal control ODEs with the deep learning archi-
tectures of ResNet type. Discretizing the ODEs with sym-
plectic, partitioned Runge-Kutta methods leads to explicit
formulae for the evaluation of the gradients in the gradient
descent iterations. The differential equation setting lends
itself to learning additional parameters such as the time
discretisation. We compare these deep learning algorithms
numerically in terms of induced flow and generalisation
ability.

� MB acknowledges support from the Leverhulme Trust Early Ca-
reer Fellowship ECF-2016-611 ’Learning from mistakes: a super-
vised feedback-loop for imaging applications’. CBS acknowledges
support from the Leverhulme Trust project on Breaking the non-
convexity barrier, the Philip Leverhulme Prize, the EPSRC grant
No. EP/M00483X/1, the EPSRC Centre No. EP/N014588/1, the
European Union Horizon 2020 research and innovation programmes
under the Marie Skodowska-Curie grant agreement No. 777826 No-
MADS and No. 691070 CHiPS, the Cantab Capital Institute for
the Mathematics of Information and the Alan Turing Institute. We
gratefully acknowledge the support of NVIDIA Corporation with
the donation of a Quadro P6000 and a Titan Xp GPU used for this
research. EC and BO thank the SPIRIT project (No. 231632) under
the Research Council of Norway FRIPRO funding scheme. This work
was supported by EPSRC grant No. EP/K032208/1.

An artificial neural network is a network of processing
units (neurons) each taking inputs and producing outputs.
Let y[in] ∈ D denote one sample of the input data, then
the corresponding output y[out] is obtained by applying
a composition of maps φ� each depending on parameters
U [�]:

y[out] = φN◦· · ·◦φ�◦· · ·◦φ1 (y
[in]), φ�(y

[�]) = φ(y[�], U [�]).

Each map φ� corresponds to a layer of the neural network.
Learning is the process consisting on establishing an ap-
propriate cost function on the network, e.g.∑

y[in]∈D

J(y[out]),

and minimimising this cost function with respect to the
parameters U [1], . . . , U [N ]. This is done in practice by a
gradient descent iteration method. Deep neural networks
are those with a large number of layers. Increasing the
number of layers leads to a larger number of parameters
and should correspond to increased predictive power of
the neural network. However it is well known that adding
layers can lead to networks that are harder to train. The
training and validation errors do not always decrease as the
number of layers N increases. Deep learning algorithms
can suffer from vanishing or exploding gradients in the
stochastic gradient descent algorithms which are used to
solve the optimisation problem. It is reasonable to think
that this problematic behaviour of the algorithms has to
do with questions of stability and convergence asN goes to
infinity. It was observed in He et al. (2016) that the ResNet
architecture is more suitable to deep learning compared
to other architectures. In the same paper experiments
with the ResNet architecture are reported with a large
number of layers showing that indeed ResNet can be
trained and gives improved training and validation errors

as the number of layers increases. Starting from the ResNet
architecture, and letting N go to infinity one obtains the
optimal control continuous problem. The ultimate goals
of the present and ongoing research are: good algorithms
(stable and converging); more efficient training of deep
neural networks; algorithms that generalise well.

2. RESNET AS OPTIMAL CONTROL

A simple version of the ResNet architecture for supervised
learning is summarised in what follows.

Setting and definitions:

• y[in] ∈ D data, y[in] ∈ Rn;
• training datum y[in] with training label c[in] ∈ Rd;
• N the number of layers;
• U [�] := (K [�],b[�]) parameters to be learned:
K [�] ∈ Rn×n, b[�] ∈ Rn, � = 0, . . . , N ;

• J (y[out]) := 1
2

∑
y[in]∈D

‖C(K [out]y[out] + b[out])− c[in]‖22

cost function, C : R → R classifier applied
component-wise on vectors 1 ;

• f(y[�], U [�]) := σ(K [�]y[�] + b[�]), σ : R → R is
the activation function acting component-wise on
vectors 2 ;

• y[0] := y[in], and y[out] := y[N ].

Deep learning problem (ResNet):

Consider the optimisation problem

min
U [�], �=0,...,N

J (y[N ]), (1)

subject to

y[�+1] = ϕh�
(y[�], U �), y[0] := y[in], y[out] := y[N ], (2)

where
ϕh�

(y[�]) := y[�] + h� f(y
[�], U [�]). (3)

Observing that the constraint equation (2) and (3) of this
optimisation problem is the forward Euler discretization of
the ODE ẏ(t) = f(y(t), U(t)), the deep learning problem
(1), (2) and (3) can be seen as the discretization of
a continuous optimal control problem, see Haber et al.
(2018) and Li et al. (2018):

Optimal control problem:

min
U(t)

J (y(T )), t ∈ [0, T ] (4)

subject to

ẏ = f(y, U), y(0) = y[in]. (5)

The optimal control point of view is useful for several
reasons, in fact

• it can be used to create new architectures;

1 In our experiments the data are propagated through the network
keeping the same dimension throughout the network until the last
layer where K[out] and b[out] are used to project the data to a space
of the same dimension as the label space. This does not need to be
the case in general. We assume that K[out] and b[out] are learned

parameters. A possible choice for the classifier is C(ξ) := exp(ξ)
1+exp(ξ)

.
2 Various choices of σ are available in the literature, we have used
σ(x) = tanh(x) in our experiments, another very popular choice is
the so called ReLu function.

• experience shows that continuous models are useful
simplifications of the reality and they are easier to
study;

• it offers a starting point for analysis.

3. FIRST ORDER OPTIMALITY AND
PARTITIONED SYMPLECTIC RUNGE-KUTTA

METHODS

In this section, we discuss necessary conditions for opti-
mality of the deep learning optimal control problem (4) (5)
leading to a Hamiltonian boundary value problem (BVP),
and the use of different Runge-Kutta discretizations of the
underlying continuous deep learning problem. The usual
numerical approach to optimal control consists in first
discretizing the cost function J and then solving the dis-
crete optimisation problem, and leads to a gradient descent
method for determining the control parameters U . If the
discretization method for the ODE is the forward Euler
method, this way of proceeding reproduces the ResNet
optimization problem formulated in (1), (2) and (3). An
alternative (indirect) approach is to first optimise then dis-
cretize. These two approaches are equivalent provided the
method used for discretizing the Hamiltonian boundary
value problem is a symplectic partitioned Runge-Kutta
method, see Hager (2000) and Sanz-Serna (2015). In
the deep learning context, the second approach, using
symplectic, partitioned Runge-Kutta methods, advanta-
geously provides explicit formulae for the gradients, these
could be useful for the implementation but are perhaps
even more useful for analysis.

First order necessary conditions for optimality of the
optimal control problem are obtained via the Pontryagin
maximum principle Pontryagin et al. (1986). We denote
by y one sample of data propagated through the neural
network.

Theorem 1. The boundary value system

ẏ= f(y, U), (6)

ṗ=− (∂yf(y(t), U(t)))
T
p (7)

0 = (∂Uf(y(t), U(t)))
T
p (8)

with boundary conditions y(0) = x, p(T ) = ∇yJ |y(T ) ,

expresses the first order necessary conditions for optimal-
ity of the optimal control problem (4), (5).

The system (6), (7), (8) is a constrained Hamiltonian
system with Hamiltonian

H(y,p, U) = pT f(y, U).

The constraint 0 = (∂Uf(y(t), U(t)))
T
p implies that this

is an index one differential algebraic equation.

Consider a Runge-Kutta method with s stages and
Butcher tableau (A, b, c), where A = {ai,j}si,j=1, b =
{bi}si=1, c = {ci}si=1 are the coefficients of the method. Re-

call that two Runge-Kutta methods (A, b, c) and (Ã, b̃, c̃)
with coefficients satisfying

b̃i = bi, c̃i = ci, biãi,j+ b̃jai,j−bib̃j = 0, i, j = 1, . . . , s,

form a symplectic partitioned Runge-Kutta pair, Hairer et
al (2006).
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0 = (∂Uf(y(t), U(t)))
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= ϕ(y
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),
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∇
U[�]J

[�]
= 0

Fig. 1. Here ϕ and ϕ̃ denote a pair of partitioned, sym-
plectic Runge-Kutta methods, e.g. ϕ forward Euler,
ϕ̃ backward Euler.

We assume to discretize the BVP (6), (7), (8) with
the symplectic, partitioned Runge-Kutta method with
method (A, b, c) for ẏ = f(y, U), and (Ã, b̃, c̃) for ṗ =

− (∂yf(y(t), U(t)))
T
p. Symplectic partitioned Runge-

Kutta methods are suited to discretize this system, be-
cause they respect the variational nature of the problem,
as explained in Theorem 2 and summarised in Figure 1.

Theorem 2. The discrete BVP system

y[�+1] = y[�] + hf(y[�]U [�]), � = 1, . . . , N

p[�+1] = p[�] − h
(
∂yf(y

[�], U [�])
)T

p[�+1], � = 0, . . . , N − 1

0 =
(
∂Uf(y

[�], U [�])
)T

p[�+1], � = 0, . . . , N − 1.

expresses the first order necessary conditions for optimal-
ity of the following discrete optimal control problem

min
(y[�],U [�]), �=0,...,N−1

J (y[N ]),

subject to

y[�+1] = y[�] + hf(y[�], U [�]), y(0) = y[in].

Remark 1. Theorem 2 here formulated for the symplectic
Euler method (combination of the forward Euler for the
first equation and backward Euler for the second equa-
tion), holds for any symplectic partitioned Runge-Kutta
method, see Sanz-Serna (2015).

3.1 Explicit formulae for the gradients

We next assume U(t) to be constant over each time step,
so that there is only one set of parameters U [�] per time
step.

Proposition 1. Let y[�] and p[�] be given by a partitioned
Runge-Kutta method applied to the Hamiltonian BVP (6),
(7), (8). Then the gradient of the cost function J with
respect to the control parameters U [�], � = 1, . . . , N is
given by

P
[�]
i =

(
p[�+1] − h

s∑
k=1

ak,ibk
bi

λ
[�]
k

)

λ
[�]
i = −∂yf(y

[�]
i , U [�])TP

[�]
i i = 1, . . . , s

∂U [�]J (y[N ]) = h

s∑
i=1

bi∂U [�]f(y
[�]
i , U [�])TP

[�]
i .

3.2 Numerical experiments

In Figure 2, we compare the evolution of the midpoint
Runge-Kutta method (which is an implicit, symplectic
Runge-Kutta method) and the ResNet. Implicit methods
where not implemented in our earlier work. Our implemen-
tation of the implicit midpoint architecture is based on the
formulae for the gradients given in Proposition 1, avoid-
ing the automatic differentiation of the iteration method
employed to solve numerically the nonlinear system of
equations at each time step. We have here used N = 5
layers with constant step size h = 0.1, and performed 5000
iterations of gradient descent with backtracking.

4. CODES AND ONGOING WORK

Our code is available on the University of Cambridge
repository under https://doi.org/10.17863/CAM.43231.
In this code, we have implemented:

• Arbitrary partitioned symplectic Runge-Kutta for-
mulae with constant step size (the forward method
in this code is explicit).

• The ResNet model where the time step h� is also a
learned parameter of the model.

• We have compared with a standard implementation
of a FeedForward algorithm (not related to ODEs).

Fig. 2. Dynamics of neural networks based on an implicit,
and an explicit Runge-Kutta scheme. Left plots time
t = 0 right plots time t = 0.5; 5 layers, step-size
h = 0.1.
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Remark 1. Theorem 2 here formulated for the symplectic
Euler method (combination of the forward Euler for the
first equation and backward Euler for the second equa-
tion), holds for any symplectic partitioned Runge-Kutta
method, see Sanz-Serna (2015).

3.1 Explicit formulae for the gradients

We next assume U(t) to be constant over each time step,
so that there is only one set of parameters U [�] per time
step.

Proposition 1. Let y[�] and p[�] be given by a partitioned
Runge-Kutta method applied to the Hamiltonian BVP (6),
(7), (8). Then the gradient of the cost function J with
respect to the control parameters U [�], � = 1, . . . , N is
given by
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3.2 Numerical experiments

In Figure 2, we compare the evolution of the midpoint
Runge-Kutta method (which is an implicit, symplectic
Runge-Kutta method) and the ResNet. Implicit methods
where not implemented in our earlier work. Our implemen-
tation of the implicit midpoint architecture is based on the
formulae for the gradients given in Proposition 1, avoid-
ing the automatic differentiation of the iteration method
employed to solve numerically the nonlinear system of
equations at each time step. We have here used N = 5
layers with constant step size h = 0.1, and performed 5000
iterations of gradient descent with backtracking.

4. CODES AND ONGOING WORK

Our code is available on the University of Cambridge
repository under https://doi.org/10.17863/CAM.43231.
In this code, we have implemented:

• Arbitrary partitioned symplectic Runge-Kutta for-
mulae with constant step size (the forward method
in this code is explicit).

• The ResNet model where the time step h� is also a
learned parameter of the model.

• We have compared with a standard implementation
of a FeedForward algorithm (not related to ODEs).

Fig. 2. Dynamics of neural networks based on an implicit,
and an explicit Runge-Kutta scheme. Left plots time
t = 0 right plots time t = 0.5; 5 layers, step-size
h = 0.1.

A number of different experiments are reported in Benning
et al. (2019). We found that different RK methods perform
rather similarly. This may indicate that the underlying
ODE is a common denominator for all the considered
architectures and methods, and plays an important role,
see also Chen et al. (2018) for similar observations. Leaving
the step-size h as a parameter in the model improves the
performance and leads to some interesting effects that
could be investigated further.

In the boundary value problem (6), (7), (8), the Hessian
∂U,UH is often nearly singular. A possible interesting av-
enue for future research could consider imposing additional
(manifold) constraints to the optimisation problem and in
turn to the Hamiltonian boundary value problem with the
purpose of obtaining the invertibility of the Hessians. Par-
titioned, symplectic, Runge-Kutta methods among which
the popular RATTLE method could be used in this case.

One aspect that we want to study is the impact that dif-
ferent RK discretisations have on the robustness of neural
network predictions with respect to adversarial attacks
(see for instance Goodfellow et al. (2014)). Adversarial
attacks are small perturbations of the network input, de-
signed to cause large errors in the network output. As such
perturbations are only possible for unstable discretisations
of potentially unstable dynamic systems, we plan to design
and analyse neural networks based on RK discretisations
for a stable underlying dynamic system and compare them
to non-RK approaches.

While so far our focus has been to consider the case when
the number of layers grows another interesting aspect is
to investigate what happens when increasing the number
of channels. This is of course been addressed before in
the literature, for example in the celebrated universal
approximation theorem Csaji (2001).
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