

Citation for published version:
Celledoni, E, Ehrhardt, MJ, Etmann, C, McLachlan, RI, Owren, B, Schonlieb, CB & Sherry, F 2021, 'Structure-
preserving deep learning', European Journal of Applied Mathematics, pp. 1-49.
https://doi.org/10.1017/S0956792521000139

DOI:
10.1017/S0956792521000139

Publication date:
2021

Document Version
Early version, also known as pre-print

Link to publication

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. Jun. 2021

https://doi.org/10.1017/S0956792521000139
https://doi.org/10.1017/S0956792521000139
https://researchportal.bath.ac.uk/en/publications/structurepreserving-deep-learning(30ab5d9d-54fc-4925-8d85-a0a33b2ef449).html

STRUCTURE PRESERVING DEEP LEARNING

ELENA CELLEDONI 1, MATTHIAS J. EHRHARDT 2, CHRISTIAN ETMANN 3,
ROBERT I. MCLACHLAN 4, BRYNJULF OWREN 1, CAROLA-BIBIANE SCHÖNLIEB 3 AND

FERDIA SHERRY 3

Abstract. Over the past few years, deep learning has risen to the foreground as a
topic of massive interest, mainly as a result of successes obtained in solving large-scale

image processing tasks. There are multiple challenging mathematical problems involved

in applying deep learning: most deep learning methods require the solution of hard
optimisation problems, and a good understanding of the tradeoff between computational

effort, amount of data and model complexity is required to successfully design a deep
learning approach for a given problem. A large amount of progress made in deep learning

has been based on heuristic explorations, but there is a growing effort to mathematically

understand the structure in existing deep learning methods and to systematically design
new deep learning methods to preserve certain types of structure in deep learning. In

this article, we review a number of these directions: some deep neural networks can be

understood as discretisations of dynamical systems, neural networks can be designed to
have desirable properties such as invertibility or group equivariance, and new algorithmic

frameworks based on conformal Hamiltonian systems and Riemannian manifolds to solve

the optimisation problems have been proposed. We conclude our review of each of these
topics by discussing some open problems that we consider to be interesting directions

for future research.

1. Introduction

Structure preserving numerical schemes have their roots in geometric integration [57], and
numerical schemes that build on characterisations of PDEs as metric gradient flows [5], just
to name a few. The overarching aim of structure preserving numerics is to preserve certain
properties of the continuous model, e.g mass or energy conservation, in its discretisation.
But structure preservation is not just restricted to play a role in classical numerical analysis
of ODEs and PDEs. Indeed, through the advent of continuum interpretations of neural
networks [55, 44, 45, 108], structure preservation is also entering the field of deep learning.
Here, the main objectives are to use the continuum model and structure preserving schemes
to derive stable and converging neural networks and associated training procedures, and
algorithms, e.g. neural networks which generalise well.

1Department of Mathematical Sciences, NTNU, N-7491 Trondheim, Norway. Email addresses:

elena.celledoni@ntnu.no; brynjulf.owren@ntnu.no
2Institute for Mathematical Innovation, University of Bath, Bath BA2 7JU, UK. Email ad-

dress: m.ehrhardt@bath.ac.uk
3Department of Applied Mathematics and Theoretical Physics, University of Cambridge,

Wilberforce Road, Cambridge CB3 0WA, UK. Email addresses: cetmann@damtp.cam.ac.uk;

cbs31@cam.ac.uk; fs436@cam.ac.uk
4Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston

North, New Zealand. Email address: r.mclachlan@massey.ac.nz

Date: June 8, 2020.

1

ar
X

iv
:2

00
6.

03
36

4v
1

 [
cs

.L
G

]
 5

 J
un

 2
02

0

2 CELLEDONI, EHRHARDT, ETMANN, MCLACHLAN, OWREN, SCHÖNLIEB AND SHERRY

1.1. Neural Networks. Neural networks are a rich class of machine learning models that
can be leveraged for many different tasks including regression, classification, natural lan-
guage processing, reinforcement learning and image generation [82]. While it is difficult
to provide an all-encompassing definition for neural networks, they can generally be char-
acterised as a combination of simple, parametric functions between feature spaces. These
functions act as individual building blocks (commonly called the layers of the network).
The main mechanism for combining these layers, which we will adopt in this work, is by
function composition.

For any k ∈ {0, . . . ,K − 1}, let X k denote a vector space (our feature space). While
in most applications, these are simply finite-dimensional Euclidean spaces, we will assume
more general structures (such as Banach spaces) when appropriate. With this, we then
define a generic layer

fk : X k ×Θk → X k+1,

where Θk is the set of possible parameter values of this layer. A neural network

Ψ : X ×Θ→ Y
(x, θ) 7→ zK

(1)

can then be defined via the iteration

z0 = x

zk+1 = fk(zk, θk), k = 0, . . . ,K − 1,
(2)

such that X 0 = X and XK = Y, where θ := (θ0, . . . , θK−1) ∈ Θ0×· · ·×ΘK−1 =: Θ denotes
the entirety of the network’s parameters. The first layer is commonly referred to as the
neural network’s input layer, the final layer as the neural network’s output layer, and all of
the remaining layers are called hidden layers.

While the above definitions are still quite general, in practice several standard layer
types are employed. Most ubiquitous are those that can be written as a learnable affine
combination of the input, followed by a simple, nonlinear function: the layer’s activation
function. The quintessential example are fully-connected layers

f : RM × (RM
′×M × RM

′
)→ RM

′

(z, (A, b)) 7→ σ(Az + b),
(3)

whose parameters are the weight matrix A ∈ RM ′×M and the bias vector b ∈ RM ′ . Its
activation function σ : RM ′ → RM ′ is typically applied component-wise, e.g. the hyperbolic
tangent [tanh(z)]i := tanh(zi) or the rectified linear unit (ReLU) [relu(z)]i := max(0, zi).
For classification networks, the most common choice for the output layer’s activation func-
tion is the softmax activation function given by

[softmax(z)]i =
exp(zi)∑M ′

j=1 exp(zj)
,

such that the neural network’s output’s entries can be regarded as the individual class
membership probabilities of the input. An important extension to the concept of fully-
connected layers lie in convolutional layers [83] where the matrix-vector product is replaced
by the application of a (multi-channel) convolution operator. These are the main building
block of neural networks used in imaging applications.

STRUCTURE PRESERVING DEEP LEARNING 3

Suppose we are given a set of paired training data (xn, yn)Nn=1 ⊂ X × Y, which is the
case for predictive tasks like regression or classification. Training the model then amounts
to solving the optimisation problem

min
θ∈Θ

{
E(θ) =

1

N

N∑
n=1

Ln(Ψ(xn, θ)) +R(θ)

}
. (4)

Here Ln(y) := L(y, yn) : Y → R∞ is the loss for a specific data point where L : Y × Y →
R∞ := R ∪ {∞} is a general loss function which usually satisfies L ≥ 0 and L(y1, y2) = 0
if and only if y1 = y2. The function Ln is usually smooth on its effective domain {y |
Ln(y) <∞} and convex. R : Θ→ R∞ acts as a regulariser which penalises and constrains
unwanted solutions. In this setting, solving (4) is a form of empirical risk minimisation
[109]. Typically, variants of stochastic gradient descent are employed to solve this task.
The calculation of the necessary gradients is performed using the famous backpropagation
algorithm, which can be understood as an application of reverse-mode auto-differentiation
[86].

1.2. Residual Networks and Differential Equations. In the following, we will discuss
artificial neural networks architectures that arise from the numerical discretisation of time
and parameter dependent differential equations. Differential equations have a long history
in the mathematical treatment of neural networks. Initially, neural networks were motivated
by biological neurons in the brain. Mathematical models for their interactions are based on
nonlinear, time-dependent differential equations. These have inspired some famous artificial
neural networks such as the Hopfield networks [63].

On a time interval [0, T], the values of the approximation to the solution of the differential
equation at different discrete times 0 = t0 < t1 < · · · < tK = T , e.g. tk = k h and h = T/K,
corresponding to the different layers of the network architecture. For a fixed final time T ,
the existence of an underlying continuous model guarantees the existence of a continuous
limit as the number of layers goes to infinity and h goes to zero.

In the spirit of geometric numerical integration [57], we discuss structural properties of
the ANN as arising from the structure preserving discretisation of a differential equation
with appropriate qualitative features such as having an underlying symmetry, an energy
function or a Lyapunov function, preserving a volume form or a symplectic structure.

Contrary to the ’classical’ design principle for layers of affine transformations followed
by activation functions (cf. (3)), so-called residual layers are a variation to this principle,
which has risen to become a standard design concept of neural networks. Here, the output
of one such layer is again added to its input, which again defines a network, the ResNet [60],
Ψ : X ×Θ→ X ,Ψ(x, θ) = zK that is now given by the iteration

z0 = x

zk+1 = zk + σ(Akzk + bk), k = 0, . . . ,K − 1,
(5)

if X = Y. If on the other hand the output space Y differs from X , it is common to add
another layer η : X → Y on top, which defines a network Ψ̂ := η ◦ Ψ : X → Y. This is for
example a common scenario in classification, where the dimensionality of Y is determined
by the number of classes.

It is easy to see that (5) corresponds to a particular discretisation of an ODE. To make
the connection more precise, denote by zk := z(tk), Ak := A(tk), bk := b(tk) samples of three

4 CELLEDONI, EHRHARDT, ETMANN, MCLACHLAN, OWREN, SCHÖNLIEB AND SHERRY

k = 0 k = 15 k = 30 k = 40

h
a
l
f
m
o
o
n
2
d

k = 0 k = 15 k = 30 k = 40

d
o
n
u
t
2
d

k = 0 k = 15 k = 30 k = 40

d
o
n
u
t
3
d

Figure 1. Evolutions of the ResNet model (6) for three different data sets.
The upper two rows show evolutions in 2d and the lower row in 3d. The
link function σ is the hyperbolic tangent and the data fit and regulariser
are the squared 2-norm, Ln(z) = 1

2‖z − yn‖
2
2, R(θ) = λ

2 ‖θ‖
2
2.

functions z : [0, T] → RM , A : [0, T] → RM×M and b : [0, T] → RM . With these notations
we can write the ResNet (5) as Ψ(x, θ) = z(T) with

z(tk+1) = z(tk) + hσ(A(tk)z(tk) + b(tk)), k = 0, . . . ,K − 1, z(0) = x (6)

if T = K and thus h = 1. For general T , it can be readily seen that (6) corresponds to the
forward Euler discretisation of

ż(t) = f(z(t), θ(t)), t ∈ [0, T], z(0) = x (7)

with θ := (A, b) : [0, T]→ RM×M × RM ∼= RM2+M ,

f(z(t), θ(t)) = σ(A(t)z(t) + b(t)). (8)

Thus, there is a natural connection of the discrete deep learning problem (4)+(5) with the
optimal control formulation (4)+(7). The dynamics of the ResNet (5) as a discretisation of
(7) is depicted in Figure 1.

From here on we will suppress the dependence on t whenever it is clear from the context.
It is a well-known fact that the optimal control formulation can be phrased as a closed dy-

namical system by using Pontryagin’s principle and this results in a constrained Hamiltonian
boundary value problem [12], the Hamiltonian of this system is given as

H(z, p, θ) = 〈p, f(z, θ)〉 (9)

STRUCTURE PRESERVING DEEP LEARNING 5

where p ∈ T ∗X ≡ RM is a vector of Lagrange multipliers. The dynamical system is then
given by

ż = ∂pH, ṗ = −∂zH, (10)

subject to the constraint

0 = ∂θH. (11)

The adjoint equation for p can be expressed as

ṗ = ∂zf
T p, p(T) =

1

N

N∑
n=1

∂zL
′
n(z(T)). (12)

In what follows we will review some of the guiding principles of structure preserving
deep learning, and in particular recent contributions for new neural networks architectures
as discretisations for ODEs and PDEs in Section 2 and the interpretation of the training
of neural networks as an optimal control problem in Section 3, invertible neural networks
in Section 4, equivariant neural networks in Section 5, and structure-preserving numerical
schemes for the training of neural networks in Section 6.

2. Neural networks inspired by differential equations

2.1. Structure preserving ODE formulations. In this section, we look at how the ODE
formulation (7) can be restricted or extended in order to ensure that its flow has favourable
properties. We are zooming in on the forward problem itself, assuming that the parameters
θ are fixed. By abuse of notaton, we will in this section write f(t, z) for f(z, θ(t)) in that
we consider θ(t) a known function of t. It is perhaps not so obvious what the desirable
properties of the flow should be, and to some extent we here lean on prior work by Haber
and Ruthotto [55] as well as Chang et al. [22]. It seems desirable that small perturbations
in the data should not lead to large differences in the end result. Preferably, the forward
model should have good stability properties, for instance in the sense that for any two nearby
solutions z1(t) and z2(t) to (7)

‖z2(T)− z1(T)‖ ≤ C‖z2(0)− z1(0)‖ (13)

for a moderately sized constant C. It is well-known that this type of estimate can be
obtained in several different ways, depending on the properties of the underlying vector
field in (7). If f(t, z) is Lipschitz in its second argument with constant L, then (13) holds
with C = eTL. Looking at (8), one can use L = Lσ max

t
‖A(t)‖ where Lσ is a Lipschitz

constant for the activation function σ.
Stability can also be studied in terms of Lyapunov functions, that is, functions V (z) that

are non-increasing along solution trajectories. Functions that are constant along solutions
are called first integrals, and a particular instance is the energy function of autonomous
Hamiltonian systems.

For stability of nonlinear ODEs one may for instance consider growth and contractivity in
the L2-norm using a one-sided Lipschitz condition. This is similar to the analysis proposed
in [127]. We assume that there exists a constant ν ∈ R such that for all admissible z1, z2,
and t ∈ [0, T] we have

〈f(t, z2)− f(t, z1), z2 − z1〉 ≤ ν‖z2 − z1‖2. (14)

6 CELLEDONI, EHRHARDT, ETMANN, MCLACHLAN, OWREN, SCHÖNLIEB AND SHERRY

In this case it is easily seen that for any two solutions z1(t), z2(t) to (7) one has

‖z2(t)− z1(t)‖ ≤ ‖z2(0)− z1(0)‖ eνt,
so that the problem is contractive if ν ≤ 0 [59]. For instance, the vector field (8) satisfies
(14) for σ absolutely continuous if

ν ≤ sup
t,D

λmax

(
DA(t) + (DA(t))T

2

)
,

where the supremum is taken over all diagonal matrices D with diagonal entries in σ′(R).
Some care should be taken here: It is not so that the sign of the eigenvalues of 1

2 (DA(t) +

(DA(t))T) is invariant under the set of all positive diagonal matrices D. In particular, even
if A(t) is skew-symmetric, the vector field (8) may still have a positive one sided Lipschitz
constant ν, but if we assume for instance that σ′(s) ∈ [0, 1], it holds that ν ≤ 1

2 max
t
‖A(t)‖∞.

Haber and Ruthotto [55] suggest to use the eigenvalues of the linearised ODE vector field
to analyse the stability behaviour of the forward problem. If the eigenvalues of the resulting
Jacobian matrix have only non-positive real parts, it may be an indication of stability, yet
for non-autonomous systems such an analysis may lead to wrong conclusions.

Clearly, the set of all vector fields of the form (8) include both stable and unstable cases.
There are different ways of ensuring that a vector field has stable or contractive trajectories.
One could be to put restrictions on the family of matrices A(t), another option is to alter
the form of (8) either by adding symmetry to it or by embedding it into a larger space where
it can be given desirable geometric properties, e.g. by doubling the dimension, it is possible
in several different ways to obtain a non-autonomous Hamiltonian vector field. In [22] and
[55] several models are suggested, and we mention a few of them in Section 2.1.2.

2.1.1. Dissipative models and gradient flows. For different reasons it is desirable to use
vector fields with good stability properties. This will ensure that data which are close to
each other in a chosen norm initially remain close as the features propagate through the
neural network. A model suggested in [55] was to consider weight matrices A(t) of the form

A(t) = S(t)− S(t)T − γI
where S(t) is arbitrary and γ is a small dissipation parameter. Flows of vector fields of
the form ż = A(t)z + b(t) exactly preserve the L2-norm of the flow when A(t) is skew-
symmetric. The non-linearity will generally alter this behaviour, but adding a small amount
of dissipation can improve the stability. It is however not guaranteed to reduce the one-sided
Lipschitz condition.

Zhang and Schaeffer [127] analyse the stability of a model where the activation function σ
is always chosen to be the Rectified Linear Unit (ReLU) function. The form of the discretised
model is such that in the limit when h tends to zero it must be replaced by a differential
inclusion rather than an ODE of the form discussed above, meaning that ż− f(t, z) belongs
to some specified subdomain of RM and their model vector field is

f(t, z) = −A2(t)σ(A1(t)z(t) + b1(t)) + b2(t), (15)

Growth and stability estimates are derived for this class of vector fields as well as for cases
where restrictions are imposed on the parameters, such as A2(t) having positive elements or
the case A1(t) = A2(t)T =: A(t) and b2(t) = 0. For this last case, we consider for simplicity
the ODE

ż = −A(t)Tσ(A(t)z + b(t)) = f(t, z), (16)

STRUCTURE PRESERVING DEEP LEARNING 7

which is a gradient system in the sense that ż = −∇zV with V = γ(A(t)z + b(t))1 where
γ′ = σ and 1 is the vector of ones.

Theorem 2.1.

(1) Let V (t, z) be twice differentiable and convex in the second argument. Then the
gradient vector field f(t, z) = −∇V (t, z) satisfies a one-sided Lipschitz condition
(14) with ν ≤ 0.

(2) Suppose that σ(s) is absolutely continuous and 0 ≤ σ′(s) ≤ 1 a.e. in R. Then (16)
satisfies the one-sided Lipschitz condition (14) for any choice of parameters A(t)
and b(t) with

−µ2
∗ ≤ νσ ≤ 0

where µ∗ = min
t
µ(t) and where µ(t) is the smallest singular value of A(t). In

particular νσ = −µ2
∗ is obtained when σ(s) = s.

Proof. (1) We compute

〈f(t, z2)− f(t, z1), z2 − z1〉 = −〈∇zV (t, z2)−∇zV (t, z1), z2 − z1〉

and define

φ(ξ) =
d

dξ
V (t, ξz2 + (1− ξ)z1)

such that

〈∇zV (t, z2)−∇zV (t, z1), z2 − z1〉 = φ(1)− φ(0) =

∫ 1

0

φ′(ξ) dξ.

Therefore, by the convexity of V (t, z)

〈f(t, z2)− f(t, z1), z2 − z1〉 = −〈
∫ 1

0

∇2
zV (t, ξz2 + (1− ξ)z1) dξ (z2 − z1), z2 − z1〉 ≤ 0

(2) Let z1 and z2 be vectors in RM . Using (16) while suppressing the t-dependence in the
parameters, we find

〈f(t, z2)− f(t, z1), z2 − z1〉 = −〈σ(Az2 + b)− σ(Az1 + b), A(z2 − z1)〉 (17)

For real scalars ζ, η and β we have

(σ(ζ + β)− σ(η + β))(ζ − η) =

∫ ζ

η

σ′(s+ β) ds (ζ − η)

and since 0 ≤ σ′(s+ β) ≤ 1 a.e. we have

0 ≤ (σ(ζ + β)− σ(η + β))(ζ − η) ≤ (ζ − η)2.

Using this inequality in (17) we obtain

−‖Az2 −Az1‖2 ≤ 〈f(t, z2)− f(t, z1), z2 − z1〉 ≤ 0

Since ‖A(z2 − z1)‖2 ≥ µ2
∗ ‖z2 − z1‖2 the result follows. �

Remark. In Theorem 2.1 we restricted the class of activation functions to be absolutely
continuous with 0 ≤ σ′(s) ≤ 1. This is true for many of the activation functions proposed
in the literature, in particular for the ReLU function and the sigmoid σ(s) = tanh s.

8 CELLEDONI, EHRHARDT, ETMANN, MCLACHLAN, OWREN, SCHÖNLIEB AND SHERRY

2.1.2. Hamiltonian vector fields. One may take inspiration from mechanical systems and
introduce the Hamiltonian framework. Separable Hamiltonian systems are defined in terms
of kinetic and potential energy functions T and V

H(t, z, p) = T (t, p) + V (t, z)

The leads to differential equations of the form

ż = ∂pH = ∂pT (18)

ṗ = −∂zH = −∂zV (19)

There are different ways to construct a Hamiltonian system from (8). In [22] the following
model is suggested

ż = A1(t)Tσ1(A1(t)p+ b1(t))

ṗ = −A2(t)Tσ2(A2(t)z + b2(t))

Let γi : R→ R be such that γ′i(t) = σi(t), i = 1, 2. The corresponding Hamiltonian is

T (t, p) = γ1(A1(t)p+ b1(t))1, V (t, z) = γ2(A2(t)z + b2(t))1

where 1 = (1, . . . , 1)T . A simple case is obtained by choosing σ1(s) := s, A1(t) ≡ I, b1(t) ≡ 0
and σ2(s) := σ(s) which after eliminating p yields the second order ODE

z̈ = −∂zV = −A2(t)Tσ(A2(t)z + b2(t))

A second example considered in [22] is obtained by setting σ1 = σ2 = σ.
From the outset, it might not be so clear which geometric features such a non-autonomous

Hamiltonian system has. There seem to be at least two ways to understand this problem
[90]. Let us assume that u = (z, p) ∈ T ∗RM ≡ RM⊕RM with “positions” z and “momenta”
p forming the phase space. We have the natural symplectic form on the phase space ω0 =
dp ∧ dz. This form can be represented by the Darboux-matrix J as

ω0(ξ, η) = 〈ξ, Jη〉, J =

[
0 I
−I 0

]
and the Hamiltonian vector field f(t, z, p) is defined via dH(·) = ω0(f(t, z, p), ·).

Let us now introduce as phase space T ∗RM × R by including the time t as a dependent
variable. The natural projection is τ : (z, p, t) 7→ (z, p). The space T ∗RM × R can then be
furnished with a contact structure defined as

ωH = τ∗ω0 − dH ∧ dt.

The first term is just the original form, ignoring the t-component of the tangents, the second
form is only concerned with the “t-direction”. One can write the matrix of ωH by adding a
row and a column to J coming from the second term −dH ∧ dt

JH =

(
J −∇uH

(∇uH)T 0

)
The resulting vector field is then fH = (fT , ft)

T and can be expressed through the equations

ifHωH = 0, ifH dt = 1

STRUCTURE PRESERVING DEEP LEARNING 9

where ifH stands for the interior derivative of the form by fH , e.g. ifH applied to the two-
form ωH is the one-form α = ifHωH such that α(η) = ω(fH , η) for all vector fields η. The
form ωH is preserved along the flow, but H is not.

Extended phase space. One can in fact recover an autonomous Hamiltonian problem from
the non-autonomous one by adding two extra dependent variables, say t and pt. We do this
by considering the manifold T ∗(RM ×R) which can be identified with T ∗RM+1. One needs
a new projection µ : (z, p, t, pt) 7→ (z, p, t) and we can define an extended (autonomous)
Hamiltonian on T ∗(RM × R) as

K = H ◦ µ+ pt

with corresponding two-form

Ω0 = µ∗τ∗ω0 + dpt ∧ dt

The corresponding matrix, JE , is just the original Darboux-matrix J where each of the
n × n identity matrices has been replaced by corresponding (M + 1) × (M + 1) identity
matrices. The extended Hamiltonian K is exactly preserved along the flow so that the new
conjugate momentum variable pt will keep track of how H(z, p, t) is varying along solutions.
The resulting ODE vector feld fE can be written as dK(·) = Ω0(fE , ·) and in coordinates
the ODE system becomes

ż = ∂pH, ṗ = −∂zH, ṫ = 1, ṗt = −∂tH. (20)

We see at once that since the equations for ż, ṗ do not depend on pt and since the solution
for t is explicitly given, we solve the same problem as before. After solving for z and p,
we obtain pt independently by integration. The second thing one may observe is that if a
numerical method φh has the property that1

φh ◦ µ = µ ◦ φh

then what we obtain by just considering the first 2M components of the numerical solution
to the extended system is precisely the same as what we would have obtained applying the
same method to the original non-autonomous problem. This observation was used by Asorey
et al. [7] to define what is meant by canonical transformations in the non-autonomous case,
and we refer to this paper for further results on the structural connections between the
two systems. In applications to deep learning, one should note that geometric properties
of the solution can mostly be deduced from the extended system rather than the original
non-autonomous one, there are numerical methods which preserve energy or the symplectic
form Ω0 and rigorous results can be proved for the long time behaviour of such integrators
[57].

2.2. Structure preserving numerical methods for the ODE model. The rationale
behind proposing ODE formulations with geometric structure is to enforce a controlled
behaviour of the solution as it is propagated through the hidden layers of the network. It is
therefore also important that when the ODE is approximated by a numerical method, this
behaviour should be retained by the numerical scheme.

1It is common to assume that a given numerical integrator is defined on systems in any dimension

10 CELLEDONI, EHRHARDT, ETMANN, MCLACHLAN, OWREN, SCHÖNLIEB AND SHERRY

2.2.1. Numerical methods preserving dissipativity. When solving numerically ODEs which
satisfy the one-sided Lipschitz condition (14) a desirable property of the numerical scheme
would be that it contracts two nearby numerical solutions whenever ν ≤ 0. That is, it
should satisfy

‖zk+1
1 − zk+1

2 ‖ ≤ ‖zk1 − zk2‖, (21)

in each time step k, preferably without too severe restrictions on the time step h. Methods
which can achieve this for any step size exist, and are called B-stable. There are many
B-stable methods, and for Runge–Kutta methods B-stability can be easily checked by the
condition of algebraic stability. Examples of B-stable methods are the implicit Euler method,
and all implicit Runge–Kutta methods within the classes, Gauss, Radau IA, Radau IIA and
Lobatto IIIC [59]. In deep learning algorithms it has been more usual to consider explicit
schemes since they are much cheaper per step than implicit ones, but are subject to restric-
tions on the time step used. Note for instance that the explicit Euler method is unstable
for any step size when applied even to linear constant coefficient systems where there are
eigenvalues of the coefficient matrix on the imaginary axis. To consider contractivity of
explicit schemes, we need to replace (14) by a different monotonicity condition

〈f(t, z2)− f(t, z2), z2 − z1〉 ≤ ν̄‖f(t, z2)− f(t, z1)‖2

where we assume ν̄ < 0. For every Runge–Kutta method with strictly positive weights bi
there is a constant r such that the numerical solution is contractive whenever the step size
satisfies

h < −2ν̄r

The value of r can be calculated for every Runge–Kutta method with positive weights, and
e.g. for the explicit Euler method as well as for the classical 4th order method of Kutta one
has r = 1 [36].

2.2.2. Numerical methods preserving energy or symplecticity. For autonomous Hamiltonian
systems there are two important geometric properties which are conserved. One is the energy
or Hamiltonian H(z, p) the other one is the symplectic structure, a closed non-degenerate
differential two-form. These two properties are also the main targets for structure preserving
numerical methods.

All Hamiltonian deep learning models presented here can be extended to a separable,
autonomous canonical system, i.e. a system of the form (18)-(19). Such systems preserve
the symplectic two-form dp∧dq and there are many examples of explicit numerical methods
that also preserve this same form in the sense that dpk+1∧dqk+1 = dpk ∧dqk. The simplest
example of such a scheme is the symplectic Euler method, defined for the variables z and p
as

zk+1 = zk + h ∂pT (tk+1, pk), pk+1 = pk − h ∂zV (tk+1, zk+1) (22)

The symplectic Euler method is explicit for separable Hamiltonian systems and is an ex-
ample of a splitting method [93]. Many other examples and a comprehensive treatment of
symplectic integrators can be found in [57]. When applying symplectic integrators to Hamil-
tonian problems one has the important notion of backward error analysis. The numerical
approximations obtained can be interpreted as the exact flow of a perturbed system with
Hamiltonian H̃(z, p) = H(z, p) + hH2(z, p) + · · · 2. This partly explains the popularity of

2This is a divergent asymptotic series, but truncation is possible at the expense of an exponentially small

remainder term

STRUCTURE PRESERVING DEEP LEARNING 11

symplectic integrators, since many of the characteristics of Hamiltonian flows are inherited
by the numerical integrator.

There exist many numerical methods which preserve energy exactly for autonomous prob-
lems, for instance there is a large class of schemes based on discrete gradients [94]. A discrete
gradient of a function H(z) is a continuous map ∇H : RM ×RM → RM which satisfies the
following two conditions

H(z2)−H(z1) = 〈∇H(z1, z2), z2 − z1〉, ∇H(z, z) = ∇H(z), ∀z, z1, z2 ∈ RM

For a Hamiltonian problem, ż = J∇H(z) it is easily seen that the method defined as

zk+1 − zk

h
= J∇H(zk, zk+1)

will be energy preserving in the sense that H(zk) = H(z0) for all k > 0. There are many
choices of discrete gradients, but most of them lead to implicit schemes and therefore have
the disadvantage of being computationally expensive.

Another disadvantage is that even if it makes sense to impose energy conservation for
the extended autonomised system explained above for deep learning models, it is not clear
what that would mean for the original problem. It remains an open problem to understand
the potential for and the benefits of using energy preserving schemes for non-autonomous
Hamiltonian systems in deep learning.

2.2.3. Splitting methods and shears. Splitting methods are very popular time-integration
methods that can be easily applied to preserve geometric structure of the underlying ODE
problems, e.g. symplecticity. The idea of splitting and composition is simply to split the
vector field in the sum of two (or more) vector fields, to integrate separately each of the
parts and compose the corresponding flows. For example splitting a Hamiltonian vector
field in the sum of two Hamiltonian vector fields and composing their flows results into a
symplectic integrator. If the individual parts are easy to integrate exactly, the resulting
time-integration method has often low computational cost. We refer to [93] for an overview
on splitting methods. An ODE on Rd is a shear if there exist a basis of Rd in which the
ODE takes the form

ẏi = 0, i = 1, . . . , k,

ẏi = fi(y1, . . . , yk), i = k + 1, . . . , d.

A diffeomorphism on Rd is called a shear if it is the flow of a shear. Splitting vector fields
into the sum of shears allows to compute their individual flows exactly simply applying the
forward Euler method.

Consider the shears Rn × Rn → Rn × Rn:

(z, p) 7→ (z + g(p), p),

(z, p) 7→ (z, p+ f(z)).

In the case of autonomous, separable, Hamiltonian systems, the symplectic Euler method
(22) can be seen as the composition of two such maps where

g(p) := h∂pT (p), f(z) := −h∂zV (z).

Another popular example is the Störmer-Verlet integrator or leapfrog integrator which is
also the composition of two shears. It is possible to represent quite complicated functions

12 CELLEDONI, EHRHARDT, ETMANN, MCLACHLAN, OWREN, SCHÖNLIEB AND SHERRY

with just two shears. The “standard map” (also known as ChirikovTaylor map) is an area
preserving, chaotic shear map much-studied in dynamics and accelerator physics.

Shears are useful tools to construct numerical time-integration methods that preserve
geometric features. As already mentioned symplecticity is one such property (if f and g are
gradients), another is the preservation of volume and, as we will see in section 4, shears can
be used to obtain invertible neural networks.

2.3. Features evolving on Lie groups or homogeneous manifolds. If the data belongs
naturally to a differentiable manifold M of finite dimension and f(z, θ) in (7) is a vector
field onM for all θ ∈ Θ then z(t) ∈M. Concrete examples of data sets in this category are
manifold valued images and signals. One example is diffusion tensor imaging consisting of
tensor data which at each point (i, j) in space corresponds to a 3×3 matrix Ai,j ∈ Sym+(3)
symmetric and positive definite, [34]. If m × l is the number of voxels in the image then
M = Sym+(3)m×l. Another example is InSAR imaging data taking values on the unit circle

S1, and whereM =
(
S1
)m×l

, [107]. In both these examples neural networks, e.g. denoising
autoencoders [116], can be used to learn image denoising. The loss function (4) can take
the form

L(Ψ(x, θ), y) =

l,m∑
i,j=1

d(Ψ(x, θ)i,j , yi,j)

where x = (x1,1, . . . , xl,m) ∈ M is the noisy image y = (y1,1, . . . , yl,m) ∈ M is the source

image and d is a distance function on Sym+(3) or S1 respectively. For example in the case
of Sym+(3) with TASym+(3) = Sym(3), a possible choice of Riemannian metric is

〈X,Y 〉TAM := trace(A−
1
2XA−1Y A−

1
2)

where X and Y are symmetric 3 × 3 and A is symmetric and positive definite, and with
trace denoting the trace of matrices. With this metric Sym+(3) is a Riemannian symmetric
space and is geodesically complete [119].

A third example concerns classification tasks where the data are Lie group valued curves
for activity recognition, here M = Gm with m the number of points where the curve is
sampled and G = SO(3) is the group of rotations, [79]. A loss function can be built using
for example the following distance between two sampled curves c1 = (c1,1, . . . , c1,m) ∈ Gm,
c2 = (c2,1, . . . , c2,m) ∈ Gm,

d(c1, c2) =

m−1∑
i=1

∥∥∥∥∥∥ log(c1,i+1c
−1
1,i)

‖ log(c1,i+1c
−1
1,i)‖

1
2
g

−
log(c2,i+1c

−1
2,i)

‖ log(c2,i+1c
−1
2,i)‖

1
2
g

∥∥∥∥∥∥
g

,

where g is the Lie algebra of G, ‖ · ‖g is a norm deduced from an inner product on g, and
log : G → g denotes the matrix logarithm. An important feature of this distance is that it
is re-parametrisation invariant and taking the infimum over all (discrete) parametrisations
of the second curve one obtains a well defined distance for curves independent on their
parametrisation, see [18] for details.

The ODE (7) should in this setting be adapted to be an ODE on M. If M is a d − p
submanifold of Rd, M := {y | g(y) = 0}, g : Rp → Rd then the ODE (7) can be modified
adding constraints, alternatively one could consider intrinsic manifold formulations which
allow to represent the data with d − p degrees of freedom instead of d. The numerical
integration of this ODE must then respect the manifold structure.

STRUCTURE PRESERVING DEEP LEARNING 13

2.4. Open problems.

2.4.1. Geometric properties of Hamiltonian models. Autonomous Hamiltonian systems and
their numerical solution are by now very well understood. For such models, one has con-
servation of energy that is attractive when considering stability of the neural network map.
The same cannot, to our knowledge, be said about the non-autonomous case. One can ap-
proach this problem in different ways. One is to consider canonicity in the sense of [7] and
study the geometric properties of canonical transformations via the extended autonomous
Hamiltonian system. This is however not so straightforward for a number of reasons. One
issue is that every level set of the extended Hamiltonian will be non-compact. Another issue
is that the added conjugate momentum variable, denoted pt above, is artificial and is only
used to balance the time varying energy function.

One should also consider the effect of regularisation, since one may expect that smoothing
of the parameters will cause the system to behave more similarly to the autonomous problem.
See subsection 3.2 of this paper.

2.4.2. Measure preserving models. The most prevalent example of measure to preserve is the
phase space volume. In invertible networks some attention is given to volume preserving
maps, see [105, 38] and also section 4 of this paper. For the ODE model this amounts
to the vector field f(t, z) being divergence free, and there are several ways to parametrise
such vector fields. All Hamiltonian vector fields are volume preserving, but the converse
is not true. Volume preserving integrators can be obtained, for example, via splitting and
composition methods [93].

2.4.3. Manifold based models. A generalisation of most of the approaches presented in this
section to the manifold setting is still missing. For data evolving on manifolds the ODE
(7) should be adapted to be an ODE on M. Just as an example, a gradient flow on M
analogous to (16) can be considered starting from defining a function V : M× Θ → R
using the antiderivative of the activation function σ, and the Riemannian metric. The
Hamiltonian formulations of section 2.1.2 could be also generalised to manifolds in a similar
way, starting from the definition of the Hamiltonian function.

An appropriate numerical time-discretisation of the ODEs for deep learning algorithms
must guarantee that also the evolution through the layers remains on the manifold so that
one can make use of the Riemannian structure of M and obtain improved convergence of
the gradient descent optimisation, see also section 6.2. The numerical time discretisation
of this ODE must then respect the manifold structure and there is a vast literature on this
subject, see for example [57, Ch. IV]. For numerical integration methods on Lie groups and
homogeneous manifolds including symplectic and energy-preserving integrators see [67, 21].

3. Deep Learning meets Optimal Control

As outlined in the introduction supervised deep learning with the ResNet architecture
can be seen as solving a discretised optimal control problem. This observation has been
made in [55, 44, 28, 87] with further extensions to PDEs are described in [108].

Recall (4)

min
θ∈Θ

{
E(θ) =

1

N

N∑
n=1

Ln(Ψ(xn, θ)) +R(θ)

}
(23)

14 CELLEDONI, EHRHARDT, ETMANN, MCLACHLAN, OWREN, SCHÖNLIEB AND SHERRY

where the neural network Ψ(·, θ) : X → X is either defined by a recursion like (5) or the
solution at the final time of an ODE (7). Another approach is to view the training as an
optimisation problem over Θ×XN where X is the space of the dynamics z, i.e.

min
(θ,z)∈Θ×XN

{
E(θ, z) =

1

N

N∑
n=1

Ln(zn(T)) +R(θ)

}
(24a)

such that żn = f(zn, θ(t)), zn(0) = xn, n = 1, . . . , N. (24b)

In machine learning the reduced formulation (23) is much more common than (24).

3.1. Training algorithms. The discrete or continuous optimal control problem can be
solved in multiple ways, some of which we will discuss next.

3.1.1. Derivative-based algorithms. The advantage of the reduced problem formulation (23)
is that it is a smooth and unconstrained optimisation problem such that if Θ is a Hilbert
space, derivative-based algorithms such as ”gradient” descent are applicable. Due to the
nonlinearity of Ψ we can at most expect to converge to a critical point E′(θ) = 0 with a
derivative-based algorithm. The most basic algorithm to train neural networks is stochastic
gradient descent (SGD) [106]. Given an initial estimate θ0, SGD consists of iterating two
simple steps. First, sample a set of data points Sj ⊂ {1, . . . , N} and then iterate

θj+1 = θj − τ j 1

|Sj |
∑
n∈Sj

(Ln ◦Ψ(xn, ·))′(θj). (25)

Other first-order algorithms used for deep learning are the popular Adam [73] but also
the Gauss–Newton method has been used [55]. A discussion on the convergence of SGD
is out of the scope of this paper. Instead we focus on how to compute the derivatives
(Ln ◦Ψ(xn, ·))′(θj) in the continuous model which is the central building block for all first-
order methods. This following theorem is very common and the main idea dates back to
Pontryagin [101]. This formulation is inspired by [16, Lemma 2.47].

Theorem 3.1. Assume that f and Ln are of class C1 and that f is Lipschitz with respect
to z. Let zn ∈W 1,∞([0, T],RM) be the solution of the ODE (24b) with initial condition xn
and pn the solution of the adjoint equation

ṗn = −∂zf(zn(t), θ(t))T pn, pn(T) = L′n(zn(T)). (26)

Then the Fréchet derivative of A := Ln ◦ Ψ(xn, ·) : L∞ := L∞([0, T],RM2+M) → R at
θ ∈ L∞ is the linear map B := A′(θ) : L∞ → R,

Bh =

∫ T

0

〈∂θf(zn(t), θ(t))T pn(t), h(t)〉dt. (27)

For finite dimensional θ a similar theorem can be proven which dates back to Grönwall
in 1919, see [54, 58]. Defining neural networks via ODEs and computing gradients via
continuous formulas similar to Theorem 3.1 has been first proposed in [24] with extensions
in [52] and [42]. In the deep learning community this is being referred to as Neural ODEs.

Similar to Theorem 3.1 a discrete version can be derived when the ODE (7) is discretised
with a Runge–Kutta method is given in [12], see also [56] for a related discussion about
this topic. For simplicity we just state the special case of the explicit Euler discretisation
(ResNet (5)) here.

STRUCTURE PRESERVING DEEP LEARNING 15

Theorem 3.2 ([12]). Let zn be the solution of the ResNet (5) with initial condition xn. If
pn satisfies the recursion

pk+1
n = pkn − h∂zf(zkn, θ

k)T pk+1
n , k = 0, . . . ,K − 1, pKn = L′n(zKn), (28)

then the derivative of A := Ln ◦Ψ(xn, ·) is given by ∂θkA(θ) = h∂θf(zkn, θ
k)T pk+1

n .

Some readers will spot the similarity between Theorem 3.2 and what is called backprop-
agation in the deep learning community. This observation was already made in the 1980’s,
e.g. [80].

If all functions in (27) are discretised by constant functions on [tk, tk+1], then the gradient
of the discrete problem (28) approximates the Fréchet derivative of the continuous problem

(27). In more detail, let ek,j ∈ L∞ be supported on [tk, tk+1] and ek,j(t) = ej ∈ RM2+M

with eji = 1 if j = i and 0 else. If we denote by A = Ln ◦ Ψ(xn, ·) the data fit using the

ODE solution (7) and Ã = Ln ◦Ψ(xn, ·) the data fit with the ResNet (5), then

A′(θ)ek,j =

∫ tk+1

tk
〈∂θf(zn(t), θ(t))T pn(t), ek,j(t)〉dt (29)

≈ h〈∂θf(zn(tk), θ(tk))T pn(tk+1), ej〉 = ∂θkj Ã(θ). (30)

In other words, in this case of piecewise constant functions, discretise-then-optimise is the
same as the optimise-then-discretise.

3.1.2. Method of successive approximation. Another strategy to train neural networks has
been recently proposed by [85] and is not based on the gradients of the reduced formulation
(23) but on the necessary conditions of (24) also known as Pontryagin’s maximum principle
[101] instead. Given an initial estimate of θ0, each iteration of the method of successive
approximation(MSA) has three simple steps. First, solve (24b) with θj which we denote by
zjn, i.e.

żjn = f(zjn, θ
j(t)), zjn(0) = xn, n = 1, . . . , N. (31)

Then solve the adjoint equation (26) with θj , zjn and denote the solution by pjn, i.e.

ṗjn = −∂zf(zjn(t), θj(t))T pjn, pjn(T) = L′n(zjn(T)), n = 1, . . . , N. (32)

The third and final step is to maximise the Hamiltonian (9) given pjn, z
j
n, i.e. for any t ∈ [0, T]

the update is defined as

θj+1(t) := arg max
θ

{
H(zjn(t), pjn(t), θ) =

1

N

N∑
n=1

〈pjn(t), f(zjn(t), θ)〉

}
. (33)

Note that this algorithm is potentially well-defined also in the non-smooth case, i.e. f is
not differentiable with respect to θ. If f is indeed smooth, R = 0 and θj+1 = θj , then

1

N

N∑
n=1

∂θf(zjn(t), θj(t))T pjn(t) = 0. (34)

and the Fréchet derivative of (23) vanishes. Analysis, extensions and numerical examples
of the MSA are presented in [85].

16 CELLEDONI, EHRHARDT, ETMANN, MCLACHLAN, OWREN, SCHÖNLIEB AND SHERRY

3.2. Regularisation. The training of a neural network (4) may include explicit regu-
larisation R and several different regularisers have been proposed in the literature, e.g.
[12, 112, 55, 96, 103], which we want to discuss in this section. Before we dive into the
specifics of these regularisers, we would like to answer the question if regularisation is nec-
essary for training neural networks.

Example 3.2.1. In order to shed some light on this, we consider the most trivial example
which is taken from [112]. To this end we use ResNet (5) and let N = 1, K = 1, M = 1,
L1(z) = (z − 1)2, x1 = 0 and σ = tanh. When no regulariser is present, R = 0, the training
problem (4) simplifies to

min
A∈R,b∈R

{
E(A, b) = (tanh(b)− 1)2

}
. (35)

Since tanh(R) = (−1, 1), there are two possible problems here. First, (35) does not have
a solution, so the task of training does not really make sense. Second, even if we ignore
the first problem and just apply a descent algorithm on (35), then we encounter another
problem: minimising sequences are not bounded. For example, let Aj := 0, bj := j, then
limj→∞E(Aj , bj) = 0 but (Aj , bj)j∈N is unbounded and does not even contain a convergent
subsequence. Thus, we cannot expect our training algorithm to converge.

The key problem in the previous example was that the range of the neural network Ψ(xn, ·)
was not closed. The non-closedness of the range is a characterisation of ill-posedness for
linear inverse problems in infinite dimensions, see e.g. [29, Theorem 3.7]. While this may
never be the case for finite-dimensional linear inverse problems, the non-linearity in (35)
results in exactly this property.

In order to overcome this problem, we can either pose constraints on the data fidelity
(network architecture, link function etc) or we cure the ill-posedness by regularisation as is
classically done when considering ill-posed inverse problems, see e.g. [46, 68]. To overcome
the problem in (35) it is sufficient to add a regulariser R which is coercive, meaning that for
any sequence of parameters (θj)j∈N it holds that

lim
j→∞

‖θj‖ =∞ ⇒ lim
j→∞

R(θj) =∞. (36)

This condition implies that minimising sequences, which are sequences (θj)j∈N such that
limj→∞E(θj) = infθ∈ΘE(θ), are bounded. In reflexive Banach spaces, this it sufficient
to guarantee at least a convergent subsequence. For more information on regularisation of
non-linear ill-posed inverse problems we refer to classical textbooks, e.g. [46, 68].

The remainder of this section is dedicated to discuss a couple of specific choices for
the regulariser R. In finite dimensions, due to the equivalence of all norms, any norm is
coercive. In addition, the regulariser may impose additional properties on the estimated
parameters. By now it is standard to use the 1-norm ‖θ‖1 =

∑
i |θi| or the squared 2-norm

‖θ‖22 =
∑
i |θi|2 for regularisation in deep learning to promote solutions which are sparse or

have small coefficients respectively, see e.g. [96, 103]. The interpretation of a deep neural
network as a process that changes with time naturally calls for other norms. For instance,
the next section relies on the squared H1-norm as a regularisation, i.e. for θ : [0, T]→ RM
it is defined as

‖θ‖2H1 = ‖θ(0)‖2 +

∫ T

0

‖∂tθ(t)‖2 dt. (37)

STRUCTURE PRESERVING DEEP LEARNING 17

This regularisation and its discrete counterpart will promote solutions which are smoothly
varying across the layers and were used in [55, 112].

Finally, the connection of deep neural networks to discretised ODEs motivate other non-
standard regularisers, too. To this end we consider the ResNet with time varying discreti-
sation

zk+1 = zk + hkσ(Akzk + bk) (38)

and extend the parameters to θ = (Ak, bk, hk)K−1
k=0 . Then it is natural to ensure that the

time steps h := (hk)K−1
k=0 are nonnegative and sum to T , more precisely we regularise the

time steps with R : RK → R∞,

R(h) =

{
0, if hk ≥ 0 k = 0, . . . ,K − 1,

∑K−1
k=0 hk = T

∞, else
. (39)

Note that R is nonsmooth and convex and since its proximal operator can be computed
efficiently [41] proximal algorithms can be efficiently employed. This regulariser has been
used for deep learning in [12].

3.3. Deep limits. Let θ(K) denote a minimiser of (4) with a ResNet (5) with K layers
and by θ∞ a minimiser of (4) with the ODE constraint (7). In what sense and under which
conditions do discrete solutions θ(K) converge when the number of layers K tends to infinity?
If these converge, do they converge to a solution of the optimal control problem θ∞?

In order to answer these questions one needs a topology in which we can compare θ(K) ∈
(RM2+M)K and θ∞ : [0, T] → RM2+M . With the discrete measure µ(K) = 1

K

∑K−1
k=0 δkT/K

we make the identification (RM2+M)K ∼= L2(µ(K), [0, T],RM2+M) =: L2(µ(K)) where by
abusing notation, we associate the discrete object θ(K) with the piecewise constant function

θ(K) : [0, T] → RM2+M with θ(K)(t) = θ
(K)
k if t ∈ [tk, tk+1). It turns out that H1 :=

H1([0, T],RM2+M) is a suitable solution space for the optimal control problem, so that

L2 := L2([0, T],RM2+M) is a natural candidate for the convergence of θ(K) to θ∞ since
both L2(µ(K)) and H1 can be embedded into L2.

The following theorem is a special case of Theorem 2.1 in [112] which answers the question
of deep limits for the ResNet (6). Its proof relies on the equivalence of convergence in L2

and a certain transport metric [51], see [112] for more details.

Theorem 3.3. Let E(K) : L2(µ(K))→ R

E(K)(θ) =
1

N

N∑
n=1

Ln(Ψ(xn, θ)) + λ

(
‖θ(0)‖2 +K

K−1∑
k=0

‖θ(tk+1)− θ(tk)‖2
)

(40)

with Ψ being the discrete ResNet (6) and E∞ : H1 → R

E∞(θ) =
1

N

N∑
n=1

Ln(Ψ(xn, θ)) + λ

(
‖θ(0)‖2 +

∫ T

0

‖∂tθ(t)‖2 dt

)
(41)

with Ψ given by the ODE (7). Let σ be Lipschitz continuous with σ(0) = 0 and Ln be
continuous and nonnegative for all n = 1, . . . , N . If λ > 0, then

(1) minimisers of E(K) and E∞ exist for all K ∈ N,
(2) minimal values converge, i.e. limK→∞minL2(µ(K))E

(K) = minH1 E∞, and

18 CELLEDONI, EHRHARDT, ETMANN, MCLACHLAN, OWREN, SCHÖNLIEB AND SHERRY

(3) any sequence of minimisers of E(K), {θ(K)}K∈N ⊂ L2, is relatively compact, and
any limit point of {θ(K)}K∈N is a minimiser of E∞.

3.4. Open problems. Connecting deep learning to optimal control has opened up new
avenues to advance the field of deep learning. In this section we discussed algorithms moti-
vated by this connection which are based on derivatives and necessary optimality conditions.
We discussed the need and potential for variational regularisation of deep learning and un-
derstanding the behaviour of deep neural networks as we increase the number of layers. All
of these routes have natural extensions which will pave the way for better understanding of
deep learning and even more powerful tools.

3.4.1. Algorithms with builtin errors. Using ODEs as a network architecture and computing
gradients via the adjoint, i.e. Theorem 3.1, is theoretically appealing. However, practically
both the forward and the adjoint ODE have to be solved numerically which induces er-
rors into the gradient. When using off-the-shelf first-order methods like SGD then they
assume that the gradients are computed exactly which may either hinder performance or
require prohibitively accurate computations, see for instance discussion in [52]. That being
said, state-of-the-art algorithms like SGD and Adam are stochastic and the update are not
guaranteed to decrease the objective so the impact of discretisation errors is not clear. More-
over, since the numerical solutions of the ODEs can be computed to any given tolerance,
this naturally poses the question how to use such knowledge and control over the accuracy
in optimisation algorithms. Some algorithms have been extended to include such errors, see
for instance [33, Chapter 8] and [122].

3.4.2. Algorithms without gradients. The MSA and its extended version have been proposed
for deep learning [85] but potentially more development is needed to fully exploit this direc-
tion including stochastic updates with respect to the data points and efficient maximisation
of the Hamiltonian.

The MSA exploits the structure of deep learning only to the point of optimal control (24)
but is generic in terms of the architecture, e.g. the choice of f . For discretised system a
more tailored algorithm has been proposed in [110] but without any theoretical guarantees
on its convergence.

3.4.3. Architectures, rates and topologies for deep limits. The question if the ResNet con-
verges with increasing number of layers was satisfactorily answered in [111] but these results
still leave a number of questions unanswered. First, do other architectures also have deep
limits? The most likely candidates here are discretisations of ODEs. Second, are these
results tightly linked to H1-regularisaton or can they be extended to other topologies, e.g.
the one induced by the total variation? Third, are there convergence rates for these limits?

Another work on the convergence of discretised ODEs with finer discretisations is [56].
In particular this work not only proves convergence but also convergence rates. It utilises
assumptions on smoothness and coercivity of certain Hessians but it is not clear if these
are met in a deep learning context. It would be interesting to verify or falsify the assump-
tions for relevant learning problems. In case these are not met, a different architecture or
regularisation might be a way out.

STRUCTURE PRESERVING DEEP LEARNING 19

4. Invertible neural networks and normalising flows

In the previous chapters, we have viewed certain neural networks as discretisations of con-
tinuous systems. In the following, we will return to the classical view of discrete networks,
which are additionally endowed with a certain structure. Invertible neural networks, i.e.
bijective neural networks, are such an example. They have been an emerging topic in deep
learning over the last few years. They are naturally connected to neural networks that are
inspired by ordinary differential equations, as flows of ODEs are themselves invertible. Two
of the main applications of invertible neural networks lie in memory-efficient backpropaga-
tion as well as generative modeling with density estimation. For simplicity, in the following
we will use the abbreviation fk = fk(·, θk) when appropriate. Much like in general, invert-
ible networks are typically parametrised as a function composition Ψ = fK ◦· · ·◦f1, with the
additional constraint that each layer fk is a bijective function. The inverse can then simply
be computed via Ψ−1 = f1

−1 ◦ · · · ◦ fK−1. A main restriction this imposes on the architec-
ture is the fact that for each layer fk : X k × Θk → X k+1, one has dim(X k) = dim(X k+1),
where the X k are the feature spaces. As a consequence, the dimension of the input space
determines the dimensions of the feature spaces in a (fully) invertible neural network.

4.1. Types of invertible layers. Invertible networks and layers can roughly be divided
into two categories: Those that are algebraically invertible and those that are inverted with
a numerical approximation scheme.

4.1.1. Coupling layers. Coupling layers [38] work by splitting a layer’s input into two parts
and applying a suitable transformation that is easily invertible for one of the two parts.
Mathematically, for an M -dimensional input, the index set I = {1, . . . ,M} is partitioned
into two sets. In convolutional networks, the partition is often done channel-wise, i.e. the
channels are split into two sets. A different type of partitioning is invertible downsampling
(also known as a masking or squeeze operation [38]). With x = (x1, x2) ∈ RM1 × RM2 and
y = (y1, y2) ∈ RM1 × RM2 , a coupling layer g : x 7→ y is defined via the mapping

y1 = x1

y2 = γ(x2, f(x1)),
(42)

where f : RM1 → RM2 and γ : RM2 ×RM1 → RM2 is invertible in the first argument. Then
g−1 : y 7→ x is given by

x1 = y1

x2 = γ−1(y2, f(y1)),
(43)

where γ−1 is the inverse of γ in its first argument (for fixed second argument). The coupling
law γ can be as simple as γ : (a, b) 7→ a + b, with which f is called an additive coupling
layer [38], such that γ−1 : (c, b) 7→ c − b. Another commonly-used class of coupling layers
are affine coupling layers [38, 39]. More complex, but in theory more expressive coupling
laws can be constructed from strictly monotonic splines [43]. Note that (42) and (43)
are shear mappings (Section 2.2.3), which in the case of ODEs are used to construct e.g.
symplecticity-preserving numerical solutions.

There is in principle no restriction on the function f . This allows for the utilisation of
arbitrarily expressive sub-networks f (e.g. a sequence of convolutional layers with non-linear
activation functions), without rendering g (algebraically) non-invertible. The numerical
stability of this inversion may still pose an issue. Stability guarantees (both for the forward
and the inverse mapping) can for instance be controlled via the Lipschitz constant of f and

20 CELLEDONI, EHRHARDT, ETMANN, MCLACHLAN, OWREN, SCHÖNLIEB AND SHERRY

γ, as shown in [10]. This mirrors stability considerations of ODEs (see Section 2.1), where
guarantees can be formulated as conditions on the Lipschitz constants. Note that while f
has to map to RM2 , the individual layers which comprise f may change the dimensionality
throughout this sub-network – only the final layer has to transform the data to the required
space RM2 . Since coupling layers perform learnable computations only on a part of the
input, the partitioning should change throughout the network, e.g. by switching the roles
of x1 and x2.

4.1.2. Invertible layers through iterative schemes. Another class of invertible layers are those
that are invertible with an iterative scheme. Invertible residual networks [9] are a special
case of the commonly-used residual networks [60], which allow for the inversion with a simple
fixed-point iteration. A residual layer can be framed as a function g : RM → RM with

g(x) = x+ f(x), (44)

where f : RM → RM is a sub-network. For fixed x, let y := x+f(x), such that x = y−f(x).
A fixed point z∗ of the function Φy : z 7→ y − f(z) is thus in the preimage of y under g, i.e.
g(z∗) = y. Note that

‖Φy(a)− Φy(b)‖ = ‖f(b)− f(a)‖ ≤ Lip(f) · ‖b− a‖, (45)

where Lip(f) is the Lipschitz-constant of g. According to Banach’s fixed-point theorem, if
Lip(f) < 1, then Φy is guaranteed to have a unique fixed point, which is the inverse of y
under g, i.e. z∗ = g−1(y). This inverse can be approximated to arbitrary precision via the
iteration

xi = y − f(xi−1) (46)

for any initial value x0. While most common layer types (such as dense or convolutional lay-
ers equipped with activation functions with bounded derivative) are Lipschitz, the condition
Lip(f) < 1 is not necessarily met. In [9], the required Lipschitz constraint is enforced by
spectral normalisation: Let the linear layer Aθ depend linearly on its parameters θ (e.g. con-
volutional layers without non-linear activation functions and biases; these are linear layers
that linearly depend on their kernel). Then Aθ̃ parametrised by

θ̄ := c · θ/‖Aθ‖2 (47)

has Lipschitz constant Lip(Aθ̄) = c. As a consequence, the layer f(x) = σ(Aθ̄ · x + b)
has Lipschitz constant Lip(f) ≤ c for any activation function σ with Lip(σ) ≤ 1, where
b is a bias vector. Thus, by updating the layers’ parameters via spectral normalisation
according to (47) after each gradient step, the required Lipschitz constraint for invertibility
is guaranteed, if one chooses c < 1. In practice, the spectral norm ‖Aθ‖2 is calculated with
the power method. To save computations, the authors in [9] only perform a single power
iteration, but re-use the estimation of the leading singular vector from the previous training
step as the initial guess. While the power method (with a finite number of iterations)
technically only provides a lower bound to ‖Aθ‖2, the authors in [9] find the Lipschitz
constraint to still be met in practice.
In the case of invertible residual networks, the connection to neural networks as numerical
solutions to ODEs is particularly strong. As noted in Section 1.2, ResNets can generally
be viewed as Euler discretisations of an ODE, if one views the activations, weights and
biases as observations of time-dependent variables. Fittingly, in [9] the authors originally
motivate the inversion of such a ResNets by looking at the dynamics of the associated ODE
backwards in time.

STRUCTURE PRESERVING DEEP LEARNING 21

4.1.3. Linear Invertible Components. Above, two general approaches for constructing in-
vertible, nonlinear layers were presented. In the following, we list a few linear, invertible
layers, which are used to increase the expressivity of invertible networks.

Coupling layers (Section 4.1.1) work by dimension splitting, which in the context of
convolutional neural networks usually consists in splitting the channels into two groups,
which are processed independently from one another. This is in contrast to standard, multi-
channel convolutions, where each output channel depends on all input channels. In order
to overcome this limitation, the channels can subsequently be linearly combined (via an
endomorphism). If the matrix of these coefficients is invertible, the automorphism created
this way can be integrated as a linear layer into the invertible network framework. These
invertible matrices can be parametrised in different ways: One approach [74] is to directly
parametrise the desired matrix via a LU factorisation (with additional fixed permutation),
which can then be inverted. While not discussed in the original publication, the diagonal
entries themselves can be e.g. parametrised to be larger than some ε > 0 to enforce stable
invertibility. This is known as invertible 1 × 1 convolution, because this ’channel mixing’
can equivalently be realised as a convolution with (in 2D) 1-by-1 filters. An extension to
this idea to convolutional layers (with larger filters) is presented in [62]. A computationally
particularly cheaply (and stably) invertible class of matrices are orthogonal matrices. In e.g.
[102], these are parametrised as a sequence of Householder transformations. Other possible
parametrisations of (special) orthogonal matrices include exponentials of skew-symmetric
matrices, Cayley transforms or sequences of Givens rotations. For a discussion about the
numerical optimisation of such classes of parameter matrices compare also the forthcoming
Section 6 and in particular (59).

Another type of linear, invertible layer are invertible down- and upsampling operations
for image data. While classical down- and upsampling methods (such as bilinear interpo-
lation or nearest-neighbour methods) from image processing are inherently non-invertible
(as they change the dimensionality of the input), it is possible to construct invertible up-
and downsampling methods. Since the dimensionality of their output must be the same as
the dimensionality of their input, decreasing (or increasing) the spatial dimensionality of an
image must be accompanied by a suitable increase (respectively decrease) in the number of
channels. One such transformation for invertible downsampling is the pixel shuffle transform
[38], which subsamples the pixels and reorders them into new channels. The inverse of this
transformation is an invertible upsampling operation. In [48], this is generalised to learnable
invertible up- and downsampling operations, which contain the (inverse) pixel shuffle as a
special case. The general idea is to construct orthogonal strided convolutional operators,
where the kernel size matches the stride s ∈ Nd, with spatial dimensionality d. It can be
shown that by a specific reordering of an orthogonal τ -by-τ matrix (where τ = s1 · · · sd) into
a filter kernel, the resulting convolution is orthogonal. This implies that the inverse is simply
given by the corresponding transposed convolution. The authors propose to parametrise the
required orthogonal matrices via exponentiating skew-symmetric matrices. As the matrix
exponential is a surjective mapping from the Lie algebra of skew-symmetric matrices to the
special orthogonal matrices, any special orthogonal matrix can be parametrised this way.

4.2. Applications.

4.2.1. Memory-efficient backpropagation. One possible area of application for invertible neu-
ral networks is memory-efficient backpropagation [53]. Let zk+1 = f(zk, θk) be the output

22 CELLEDONI, EHRHARDT, ETMANN, MCLACHLAN, OWREN, SCHÖNLIEB AND SHERRY

of a neural network’s layer with nonlinear mapping f : X k ×Θk → X k+1, where θk are the
layer’s parameters. Let further L be the loss of the network. Then

∇θkL =
(
∂θkz

k+1
)∗∇zk+1L =

(
∂θkf(zk, θk)

)∗∇zk+1L

provides the weight-gradient necessary for the training of the network. For the calculation
of this gradient, one needs both the gradient of the loss with respect to the output node (i.e.
∇zk+1L), as well as the ability to calculate the derivative ∂θkf(zk, θk). Unless f is linear,
the calculation of the derivative requires access to zk, meaning that zk needs to be stored
in memory. This typically represents the bulk of the memory demand in training neural
networks. If, however f is invertible, one can simply calculate zk from zk+1 via

zk = f−1(zk+1, θk)

for the additional computational cost of calculating the inverse (where f−1 is the inverse of
f in its first argument). Thus, instead of storing activations in memory during the forward
pass, intermediate activations can simply be successively reconstructed from the output
layer’s activation. The memory requirement of training an invertible network using this
scheme is thus independent of the number of invertible layers.

4.2.2. Invertible networks as sub-networks. In practice, many classical applications of neural
networks such as classification, regression or segmentation do not typically map between
vector spaces of the same dimensionality. Hence, a bijective function that maps between
these two spaces does not exist, which is why a fully invertible neural network typically
cannot solve the desired task. It is however possible to use an invertible neural networks
as a subnetwork in a neural network. For example, if Ψ : X → X is an invertible network
and η : X → Y is a suitable non-invertible layer, the combined network η ◦ Ψ : X → Y
can for instance be used for a classification task of predicting labels in Y from features
X . As demonstrated in [69], such a neural network can have competitive performance to
a comparably-sized residual network [60] on ImageNet [37]. Adding an output layer which
transforms between spaces mirrors the approach for discretised ODEs, see Section 1.2.

The use of invertible networks as sub-networks for example allows for the utilisation of
the memory efficient backpropagation for these sub-networks (cf. Section 4.2.1), while the
respective gradients of non-invertible sub-networks can be calculated conventionally.

4.2.3. Density estimation and generative modeling. Aside from generative adversarial net-
works (GANs) and variational autoencoders (VAEs), normalising flows are another class of
machine learning models that can be used to artificially generate data. While e.g. GANs are
able to generate realistic-looking images [71], they lack the ability to estimate the likelihood
of data under the generative model at hand. Likewise, VAEs can only estimate a lower
bound of the likelihood – the variational lower bound. This is in contrast to normalising
flows, which are trained via maximum likelihood estimation.

Like most generative models, normalising flows generate data from a simple base distri-
bution (usually Gaussian) via a learned transformation. Let the random variable z have
probability density function q, for which we will write z ∼ q(z). For any diffeomorphism f ,
it holds that

x := f−1(z) ∼ q(z) ·
∣∣det(∂zf

−1(z))
∣∣−1

STRUCTURE PRESERVING DEEP LEARNING 23

due to the change-of-variables theorem3 [14]. This means that for the probability density of
x (denoted p), the log-likelihood of x can be expressed as

log p(x) = log q(f(x)) + log |det(∂xf(x))| . (48)

Let f be parametrised by an invertible neural network, i.e. f(x) = Ψ(x, θ) for all x ∈ X .
Given training data (xn)Nn=1, the minimiser of

min
θ∈Θ

{
E(θ) = − 1

N

(
N∑
n=1

− log q(Ψ(xn, θ)) + log |det(∂xn
Ψ(xn, θ))|

)}
. (49)

is a maximum likelihood estimator of the training data under the neural network. Models
trained this way are called normalising flows, because they are usually trained to convert
complicated data into normal distributions. In this framework, artificial data can be gen-
erated by sampling f−1(z), where z ∼ q(z). An example of learning the ’two half-moons’
dataset this way is provided in Figure 2. This case highlights that continuously transforming
a normal distribution into a distribution whose probability density function has disconnected
support is not possible. However, the normalising flow instead assigns low probability den-
sity to areas outside of the support, which results in a distribution that resembles the true
distribution.

One of the main difficulties in designing normalising flows lies in the evaluation (respec-
tively differentiation) of the determinant term. Note that for a neural network of the form
(2) it holds that

det(∂z0Ψ(z0, θ)) = det(∂zK−1zK) · · · det(∂z0z
1),

such that the computation of the determinant for the whole network can be performed in
a layer-by-layer fashion. Still, näıvely computing each determinant by the Leibniz formula
yields prohibitive computation times. Depending on the types of layers used, the structure of
the individial layers’ Jacobian makes employing different determinant identities possible. If
e.g. the Jacobian is lower triangular (as is the case with coupling layers [38]), the determinant
reduces to the product of the Jacobian diagonal entries. Invertible residual networks [9] on
the other hand induce no such structure. By using the Lipschitz constraint on f in equation
(44) and using the identity from [120], the authors show that in their case

log
∣∣det(∂z0Ψ(z0, θ))

∣∣ = trace
(
log ∂z0Ψ(z0, θ)

)
holds. The matrix logarithm is then approximated as a truncated Taylor series, whereas
for the evaluation of the trace, the Hutchinson estimator [65] is employed. An extension
to this concept is presented in [23], where the truncation with a fixed number of steps is
replaced by a ’Russian roulette’ estimator, a type of Monte-Carlo estimator. This estimator
introduces a stochastic truncation of the series, which results in an unbiased estimator of
the log-likelihood (48).
In the context of normalising flows, another connection to ODEs becomes apparent: As
noted in [24], a continuous version of the change-of-variables theorem may be used to for-
mulate a continuous normalising flow, which in turn can be solved numerically via a dis-
cretisation scheme. A maximum likelihood estimator can in turn be obtained by training a
Neural ODE [24].

3Here it suffices to consider invertible functions f that are only locally diffeomorphic in x. This is of
practical relevance, because many neural networks are only locally differentiable due to the use of piecewise

differentiable activation functions such as ReLU.

24 CELLEDONI, EHRHARDT, ETMANN, MCLACHLAN, OWREN, SCHÖNLIEB AND SHERRY

Figure 2. Left: ’Two half-moons’ dataset. Middle: An approximation
of the probability density function of the ’two half-moons’ dataset by a
normalising flow, generated by the code from [23]. Right: Points sampled
from the approximated distribution.

4.3. Open problems.

4.3.1. Fast inverses without coupling. Coupling layers (Section 4.1.1) allow both for quick
forward and inverse computations. Their expressivity is however hindered by the fact that
expressive, learned transformations are only applied to a part of their input, while the
remaining portion of the input is not transformed. However, while this problem can be
mitigated by using multiple coupling layers (with different partitions of the input), it may
be desirable to construct invertible layers, where each output neuron depends on all input
neurons (as is the case with ’conventional’ fully-connected or convolutional layers). Invertible
residual layers (Section 4.1.2) on the other hand fulfill this criterion, but they rely on
a numerical inversion via a fixed-point iteration, which requires multiple evaluations of
the forward operation. Furthermore, in order to guarantee their invertibility, a Lipschitz
constant needs to be controlled, which requires additional computation time. For practical
purposes, it would be desirable to combine both methods’ advantages in order to obtain
both fast and expressive invertible layers.

4.3.2. Stability guarantees. As discussed in [10], controlling the Lipschitz constant of in-
vertible layers is a conceptionally simple, but practically costly method of guaranteeing a
certain stability of the inverse. Furthermore, as discussed above, they need to be controlled
in order to guarantee the convergence of the iterative scheme for the inversion of residual
layers. In the interest of computational efficiency, is there a computationally cheaper way
to control the Lipschitz constant than via the proposed power method? Work in this direc-
tion has already been performed in [23], as the authors experiment with Lipschitz constant
corresponding to mixed norms.

In a similar vein, are there alternative ways of guaranteeing stability other than by
controlling the Lipschitz constant?

5. Equivariant neural networks

In recent years, the use of convolutional architectures in deep neural networks [81] for
imaging tasks in machine learning has proven to be an extremely fruitful idea. A par-
ticularly well known example of this is the work in [78], where deep convolutional neural

STRUCTURE PRESERVING DEEP LEARNING 25

networks (CNNs) were used to achieve state-of-the-art performance in the ImageNet contest
(a challenging image classification task), outperforming other approaches by a large margin.
Another striking example of the power of CNNs is given in [114], where it is shown that
even an untrained CNN can be used as an effective prior for natural images. It is commonly
understood that the effectiveness of CNNs in imaging tasks is in large part due to them
being in some sense right for the problems at hand. CNNs combine the flexibility of neural
networks (in the form of many learnable filters) with the known symmetries of images: both
convolutions and pointwise nonlinearities commute with translations of the underlying do-
main, so that the outputs of a CNN transform in a predictable way when their inputs are
translated. By constraining the search space in a principled way (in theory, fully connected
networks are at least as expressive as CNNs), CNNs can make efficient use of training data
to learn to perform tasks to a higher standard than fully connected networks and it is easier
to interpret the action of a CNN on its inputs than it is do the same for a fully connected
network.

Given the success of CNNs in machine learning, it is natural to ask whether the concept of
convolutional architectures can be generalised to incorporate other symmetries into neural
network architectures. One current line of research in this direction is the study of group
equivariant neural networks, which has been gaining considerable traction since the work
on group convolutional neural networks in [32]. A neural network can be thought of as a
function taking inputs from a feature space X 1 and returning outputs from a feature space
X 2. We will call a function F : X 1 → X 2 G-equivariant if there are group actions of G

on X 1 and X 2 (denoted by TX
1

and TX
2

respectively to emphasise that the group actions
need not be of the same nature) such that

F (TX
1

g x) = TX
2

g [F (x)] for all x ∈ X 1, g ∈ G. (50)

To elucidate this definition, let us note some examples of behaviour covered by it:

• if G acts trivially on X 2, i.e. TX
2

g = id, we recover invariance of F to group
transformations of its input, which is often a desirable property of an image classifier,

• whereas if X 1 = X 2 and TX
1

= TX
2

, the output of F transforms in exactly the same
way as the input does, which is a useful property to have in many image-to-image
tasks such as segmentation.

If we are given two G-equivariant functions F1 : X 1 → X 2, F2 : X 2 → X 3 (with the same
action of G on X 2 for both functions), their composition is easily seen to be G-equivariant:

F2(F1(TX
1

g x)) = F2(TX
2

g [F1(x)]) = TX
3

g [F2(F1(x))].

Appealing to this result and noting the usual structure of a neural network as a composition
of an alternating sequence of affine maps and nonlinearities, there is a promising way of de-
signing G-equivariant neural networks: design G-equivariant linear maps and G-equivariant
nonlinearities, add biases as appropriate to get affine maps from the linear maps, and com-
pose the affine maps and nonlinearities as you would in an ordinary neural network.

As it turns out, when the group actions considered above are in fact group representa-
tions (i.e. they act linearly), the problem of finding and characterising G-equivariant linear
maps reduces to the well-studied problem of finding and characterising intertwiners in rep-
resentation theory. This insight has recently been used to unify existing approaches to
G-equivariant neural networks and to show that G-equivariant linear maps necessarily take

26 CELLEDONI, EHRHARDT, ETMANN, MCLACHLAN, OWREN, SCHÖNLIEB AND SHERRY

the form of a type of group convolution [30]. Let us describe this work in some more detail
here.

5.1. Equivariant transformations of feature maps on homogeneous spaces.

5.1.1. Homogeneous spaces. It has been observed [30, 77] that there is a common setting
unifying many of the existing approaches to G-equivariant neural networks. We are given
a group G which acts continuously and transitively on a domain X (X is a so-called ho-
mogeneous space of G). With this assumption we can cover the cases where X = Rd and
G = SE(d) := RdoSO(d) the group of rotations and translations, and where X = Sd−1 and
G = SO(d), which are two commonly studied cases. Fixing a point p ∈ X as the origin and
denoting by Gp = {g ∈ G|gp = p} the stabiliser of p, we can identify X with the quotient
space G/Gp: since G acts transitively on X, for any q ∈ X there is a g ∈ G such that gp = q.

On the other hand if g1p = g2p, then g−1
2 g1p = p, so that g−1

2 g1 ∈ Gp, or g2Gp = g1Gp.
Hence, there is a well-defined bijective map X → G/Gp mapping q to gGp, where g ∈ G is
such that gq = p. Conversely, given a closed subgroup H < G, G acts transitively on the
quotient space G/H by left multiplication, making it into a homogeneous space of G. From
this reasoning, we see that the homogeneous spaces of G can be identified precisely with the
quotient spaces G/H as H ranges over closed subgroups of G. Henceforth, we will consider
two arbitrary subgroups H1, H2 < G and the associated homogeneous spaces G/H1, G/H2.

5.1.2. Equivariant linear maps. Scalar-valued features on these spaces can be modelled as
functions G/Hi → R and these can be arbitrarily stacked to get feature maps x : G/Hi →
RC that transform under the action of G according to [π1(g)x](p) = x(g−1p), but in this
setting one can also consider more general features: given a representation (Vi, ρi) of Hi,
we can consider signals to be fields of Vi-valued features on G/Hi, which are strictly more
general than the stacks of scalar-valued fields since their components are mixed under the
action of G. This is mathematically formalised by noting that G is a principal Hi-bundle,
constructing from this the associated vector bundle Pi with fiber space Vi, the sections of
which, Γ(Pi), are the signals of interest. Under the action of the group G, these signals
naturally transform according to the representation of G induced by H, πGHi

. To put this

in the notation of (50), we are taking X 1 = Γ(P1),X 2 = Γ(P2) and TX
1

g = πGH1
(g), TX

2

g =

πGH2
(g) and we are asking what the general form is of a linear map F : X 1 → X 2 that

satisfies (50) in this case. There are multiple ways in which Γ(Pi) and πGHi
can be modelled,

but for this purpose it is easiest to consider Mackey functions: we identify x ∈ Γ(Pi) with
x : G → Vi satisfying x(gh) = ρi(h

−1)x(g) for all h ∈ Hi, in which case the induced
representation is just given by [πGHi

(g)x](g′) = x(g−1g′). Writing F as integration against a
kernel K : G×G→ Hom(V1, V2), the equivariance condition tells us that∫

G

K(g′−1g, g′′)x(g′′) dg′′ = [πGH2
(g′)F (x)](g)

= F ([πGH1
(g′)x])(g)

=

∫
G

K(g, g′′)x(g′−1g′′) dg′′.

STRUCTURE PRESERVING DEEP LEARNING 27

The final expression on the right hand side can be rewritten assuming left-invariance of the
measure (as can be ensured if we have a Haar measure on G) to give∫

G

(K(g′−1g, g′′)−K(g, g′g′′))x(g′′) dg = 0 ∀x ∈ Γ(P1),

which is the case if and only if

K(g′−1g, g′′) = K(g, g′g′′) ∀g, g′, g′′ ∈ G.

This final condition tells us that K(g, g′) = K(e, g−1g′) =: k(g−1g′), so we find that F is
equivariant and only if it is given by a convolution type operation:

F (x)(g) =

∫
G

k(g−1g′)x(g′) dg′. (51)

Since we have assumed that F (x) ∈ Γ(P2) is a Mackey function, we must have∫
G

ρ2(h−1
2)k(g−1g′)x(g′) dg′ = ρ2(h−1

2)F (x)(g) = F (x)(gh2)

=

∫
G

k((gh2)−1g′)x(g′) dg′

=

∫
G

k(h−1
2 g−1g′)x(g′) dg′.

Hence ρ2(h2)k(g) = k(h2g) for all h2 ∈ H2, g ∈ G. On the other hand, x ∈ Γ(P1) is also a
Mackey function, so for any h1 ∈ H1∫

G

k(g−1g′)x(g′) dg′ =

∫
G

k(g−1g′)ρ1(h1)ρ1(h−1
1)x(g′) dg′

=

∫
G

k(g−1g′)ρ1(h1)x(g′h1) dg′

=

∫
G

k(g−1g′h−1
1)ρ1(h1)x(g′) dg′.

Here we have assumed right invariance of the measure. This implies that k(gh1) = k(g)ρ1(h1)
for h1 ∈ H1, g ∈ G. Taking together the above results, the condition for equivariance of a
linear map F : Γ(P1) → Γ(P2) is that we perform a convolution type operation against a
kernel k satisfying the linear constraints

k(h2gh1) = ρ2(h2)k(g)ρ1(h1) ∀h1 ∈ H1, g ∈ G, h2 ∈ H2.

These constraints can be solved once the type of features Vi have been chosen (so before
training time) to find a basis for the convolution kernels that give rise to equivariant linear
maps, and at training time we can learn equivariant linear maps by learning the parameters
of an expansion in this basis.

28 CELLEDONI, EHRHARDT, ETMANN, MCLACHLAN, OWREN, SCHÖNLIEB AND SHERRY

5.1.3. Equivariant nonlinearities. Having established the general form for equivariant linear
maps, the question remains how to choose equivariant nonlinearities. If we are to propose
a nonlinearity F : Γ(P1)→ Γ(P1), we can not in general just apply a pointwise nonlinearity
as in ordinary neural networks: this will only work if the chosen representation of H1 does
not mix components, as is the case for instance if the representation of H1 is trivial (which
is always the case if H1 = {e}) or if the regular representation of H1 is chosen [118]. One
way to make this work in general is by having the first layer of the network be a linear layer
mapping feature maps defined on the base domain X = G/H1 to feature maps defined on
the group G = G/{e} and letting all feature maps after that be defined on the group [32, 11].
If the chosen representation does not work well with pointwise nonlinearities, another thing
that can be done is to take the pointwise norm of the feature map (which is a scalar-valued
feature map), pass it through a pointwise nonlinearity, and multiply this by the feature
map: F (x)(p) = f(‖x(p)‖)x(p), as is done for instance in [121, 111]. Note that f could
include a learnable parameter such as a bias parameter. Another option is to combine
features of different types in a tensor product [76], which is particularly convenient when
working in Fourier space: in Fourier space the convolution operation becomes a pointwise
multiplication, but it is not immediately obvious how to apply equivariant nonlinearities, so
other methods performing the convolution in Fourier space have to transform back to ”real”
space (which is computationally expensive) before applying the nonlinearity [31, 47].

5.2. A numerical demonstration of the use of equivariant neural networks. In this
section, let us consider an example that demonstrates some of the advantages that can be
gained by using equivariant neural networks. We will use a supervised learning approach
to learn a denoiser: we assume that we are given pairs random variables representing clean
and noisy images (x∗, x) and attempt to solve the following optimisation problem:

min
Ψ∈C

1

2
E
[
‖Ψ(x)− x∗‖22 + λ‖∇(Ψ(x)− x∗)‖1,ε

]
. (52)

Here, C is a class of functions, λ ≥ 0 is a small constant, ∇ is a finite difference image
gradient operator and ‖·‖1,ε is a smoothed version of the 1-norm. In this specific experiment,
we let the clean images x∗ be of size 60×60, containing random rectangles with sides aligned
to the grid and with random colours and we let the noisy images be generated from clean
images by adding Gaussian white noise (as shown in the top right row of Figure 3). It
is natural to ask for the denoiser to commute with rotations and translations, that is, for
the denoiser to be equivariant with respect to rotations and translations. We compare two
choices of C in Problem (52), which we will refer to as the class of ordinary and equivariant
denoiser respectively. In both cases, the functions in C the form of a ResNet (as defined in
(5)) preceded by a learnable lifting layer and succeeded by a learnable projection layer. The
distinction between the ordinary and equivariant denoisers, is that the ordinary denoiser uses
ordinary convolution operations and a pointwise ReLU nonlinearity (resulting in translation
equivariance), whereas the equivariant denoiser uses the rotation and translation equivariant
versions of these operations as defined in [121]. To give a fair comparison, we fix the same
width and depth in both classes. In this case, the equivariant denoiser has a number of
degrees of freedom that is less than 10% of the number of degrees of freedom of the ordinary
denoiser (62994 versus 741891). The denoisers are trained by performing 1500 iterations of
Adam [73] on minibatches of size 64, decreasing the step size when validation error stagnates,
and for each denoiser we perform 5 training runs. The results are shown in Figure 3: as
we see in the plot of the training errors, the equivariant denoiser consistently converges in

STRUCTURE PRESERVING DEEP LEARNING 29

fewer iterations than the ordinary denoiser and achieves a better objective function value.
Besides this, we can be confident that the equivariant denoiser will generalise to rotated
examples despite not having seen them in training, whereas it is hard to say anything about
how the ordinary denoiser generalises to rotated examples.

500 1,000 1,500
10−4

10−3

10−2

10−1

100

Iteration number

T
ra
in
in
g
E
rr
or

Equivariant
Ordinary

Clean Noisy Ordinary Equivariant

Clean Noisy Ordinary Equivariant

On-grid example

Rotated example

Figure 3. A demonstration of the use of equivariance in a denoising task.
On the left, we have plotted training errors for 5 runs of each denoiser. On
the right, we have displayed the outputs of the denoisers on an example (the
”on-grid” example) similar to the ones used for training and on a rotated
version.

5.3. Open problems.

5.3.1. Sample complexity bounds. One of the main motivations that is given for the use of
equivariant neural networks is that they should be able to use training data more efficiently
than neural networks that are not designed to be equivariant. This is particularly important
in applications in which training data is in short supply, as is often the case in inverse
problems [6]. In the machine learning community, the number of samples needed to estimate
a given object is known as the sample complexity. There is recent work [40] establishing
sample complexity bounds for some simple CNN models, and showing that these bounds
compare favourably to the corresponding ones for fully connected networks. In a similar
vein, it would be interesting to establish rigorous sample complexity bounds for equivariant
neural network models that guarantee their data efficiency.

5.3.2. Approximation properties. When applying existing group equivariant neural network
architectures as in the framework described above, there are a large number of choices that
need to be made: the domains on which the feature maps are defined, the choices of the
types of features (the representation of H that is used), the choice of nonlinearity. While
there is a vast amount of literature on the approximation properties for ordinary neural
networks (including older works such as [35, 64] and some more recent works that apply
to CNNs [15, 100]), there is not yet the same theoretical guidance on how the choices of
the various aspects of group equivariant neural networks can be made to guarantee that
the networks are sufficiently expressive. There is some theoretical work on hypothetical
equivariant neural networks and approximation results relating to them [124], but it is not
yet of practical use in choosing an equivariant architecture.

30 CELLEDONI, EHRHARDT, ETMANN, MCLACHLAN, OWREN, SCHÖNLIEB AND SHERRY

5.3.3. Approximate equivariance. Many of the symmetries we would like to work with in
equivariant neural networks are continuous, but when we implement them in practice it is
necessary to discretise them. Generally in the literature, one of two approaches is taken:
the group is discretised and exact group convolutions are taken with respect to the discrete
subgroup (in which case we have exact equivariance to the discrete symmetry), or the group
convolutions are derived in the continuous setting and eventually discretised (so that we
have approximate equivariance to the continuous symmetry). In either case, it has not been
studied in detail how much of an error we make when we make these discretisations and
whether there is an optimal discretisation to use. It would be of great interest to provide
bounds on the equivariance error, as these could be used to decide, for example, whether a
theoretically invariant classifier is actually invariant in practice.

6. Structure-exploiting learning

The training of neural networks amounts to the numerical optimisation of typically
smooth, but high-dimensional and highly non-linear objectives as in (4), and as discussed
in the optimal control framework in Section 3. The most widely used numerical method for
(4) is Adam [73].

As before let Ψ : X ×Θ→ X be a (deep) neural network that depends on the data and
the parameters θ ∈ Θ. The training of Ψ amounts to the optimisation over the parameters
θ with respect to a loss function

min
θ∈Θ

{
E(θ) =

1

N

N∑
n=1

L(η ◦Ψ(xn, θ), yn) +R(θ)

}
,

as in (4). While the loss function L usually is a convex function, the dependency of
the parameter θ on the network Ψ is in general highly nonlinear which makes the over-
all optimisation problem in (4) non-convex. For what follows, let us denote by Lj(θ) =

1
|Sj |

∑
n∈Sj (L(η ◦Ψ(xn, θ), yn)+ 1

NR(θ)), for j = 0, 1, . . . and where Sj is a randomly chosen

set of indices from the N training samples. For fixed positive parameters α and β1, β2 < 1,
and for appropriate initialisations for the parameters and the auxiliary moment functions
m0 and v0, Adam amounts to the following iteration

mj =
1

(1− βj1)

(
β1m

j−1 + (1− β1)∇Lj(θj−1)
)

vj =
1

(1− βj2)

(
β2v

j−1 + (1− β2)∇Lj(θj−1) · ∇Lj(θj−1)
)

θj = θj−1 − α mj

√
vj + ε

,

(53)

for a small ε > 0 and where
√
vj is taken component-wise. Stochasticity, in the form of

choosing subsets Sj randomly in every iteration, is crucial to deal with high-dimensionality
of the problem.

Adam is being used for almost all of neural network training because of its easy im-
plementation, its robustness to rescaling, its computational efficiency and small memory
requirements and for its suitability for problems which are large-scale in terms of training
data and parameters. On the other hand, its theoretical convergence properties do in gen-
eral not guarantee convergence to a solution of (4), cf. [104] where the authors propose a

STRUCTURE PRESERVING DEEP LEARNING 31

convergent variant in the convex setting and [125] which provides convergence guarantees
in the non-convex and stochastic setting.

The literature for optimising smooth (non-convex) objectives is, however, much richer
than Adam alone. It is tightly linked to developments in convex analysis and operations
research, as well as the numerical discretisation of dynamical systems, ODEs and PDEs
as discussed in parts in Sections 2 and 3. Also in the context of neural network training
other optimisation schemes have been investigated recently. Here, we will mainly focus on
those which have some structure-preserving property such as Hamiltonian descent [88, 98]
which are guaranteed to dissipate a Hamiltonian energy, optimisation approaches when the
features or network parameters are elements in a Riemannian rather than Euclidean space
[1, 113, 84], and – as a special case of the latter – information geometry approaches that
describe optimisation on statistical manifolds [4].

6.1. Conformal Hamiltonian systems. The most classic approach for minimising E(·)
over RL is gradient descent, i.e. to seek a stationary point of E by evolving

θ̇ = −∇E(θ). (54)

Several optimisation methods for E can then be derived through different discretisations of
(28), with the simplest one being explicit gradient descent and its stochastic versions [106].
Another route for the derivation of optimisers for E is obtained by replacing the gradient
flow (54) with a Hamiltonian flow as in (10) with dissipation, for example a conformal
Hamitonian system, i.e.

ṗ = −∇E(θ)− γp,

θ̇ =
p

µ
,

(55)

with γ, µ > 0. Rewriting the system (55) in one equation gives

θ̈ + γθ̇ = − 1

µ
∇E(θ),

which is gradient descent accelerated by momentum. More generally, (55) is a special case
of a conformal Hamiltonian system of the form

ṗ = −∇θH(p, θ)− γp

θ̇ = ∇pH(p, θ),
(56)

for a separable Hamiltonian function H(θ, p) = T (p) + E(θ) as in Section 2.1.2. Taking

T (p) = 1
2µ‖p‖

2
2 we get (55). Taking T (p) =

√
‖p‖2 + ε we get a new optimisation approach

for E which is called relativistic gradient descent [49]

ṗ = −∇E(θ)− γp

θ̇ =
p√

ε+ ‖p‖2
(57)

While the gradient system (54) dissipates E, for a conformal Hamiltonian system (56) the
Hamiltonian H is dissipated as

d

dt
H(p, θ) = − γ

2µ
pT p.

32 CELLEDONI, EHRHARDT, ETMANN, MCLACHLAN, OWREN, SCHÖNLIEB AND SHERRY

Figure 4. Optimisation of V (x, y) = 2x2 − 1.05x4 + 1/6x6 + xy + y2.
Comparison of gradient descent, Hamiltonian descent and Adam iterations,
initial guess [−0.5, 0.8], global minimum at [0, 0]. Methods and parameters:
Gradient descent (GD) learning rate h = 0.01, Heavy ball (HB) µ = 0.9,
h = 0.01, Nesterov Accelerated Gradient (NaG) µ = 0.012, h = 0.01,
Relativistic Gradient Descent (RGD) [49] h = 0.0001, µ = 0.9259, Adam
β1 = 0.9, β2 = 0.999, ε = 1e − 8, α = h = 0.1. Left: value of the loss
function versus number of iterations. Right: trajectory of approach to the
optimum (NaG h = 0.01 yellow, RGD h = 0.0001 magenta, Adam h = 0.1
green).

For separable Hamiltonians with the kinetic energy T chosen so it has a global minimiser in
0, limit points of (56) recover stationary points of E. More precisely, for H = T (p) + E(θ)
being separable the equilibria of (56) fulfill

γ p = −∇E(θ)

0 = ∇T (p).

If T is chosen so it has a unique global minimum in p∗ = 0 (e.g. in the case of (55)), we have
that (0, θ∗) is a zero of ∇H(p, θ) if and only if u∗ is a zero of ∇E(θ), i.e. θ∗ is a stationary
point of E(θ). Moreover, we have that (0, θ∗) is the solution of the conformal Hamiltonian
system as t→∞. Then, using a numerical integration method that preserves the property
of Hamiltonian energy dissipation (such a numerical method is called conformal symplectic
scheme [13]), we get an approximation of (θ∗, 0), where (θ∗, 0) is an equilibrium of (56) and
θ∗ a stationary point of E [92].

In the recent work [49] the authors take advantage of the connection between optimisation
schemes for E and conformal symplectic Hamiltonian schemes for H = T +E for the design
of new optimisation approaches for E - similar to the connections we have seen before, e.g.
between Adam and conformal Hamiltonian descent. See also Figure 4 for a comparison
between different optimisation methods applied to the camelback function.

6.2. Learning in Riemannian metric spaces. After identifying the dissipation of an
appropriate Hamiltonian as a structure worth preserving for numerical optimisation of neural
networks, as discussed in the last section, explicit conditions on the parameter matrices
themselves, such as orthogonality, seem to impose structure on the optimisation that can be
of advantage and in particular lead to better (at least empirical) convergence rates, better

STRUCTURE PRESERVING DEEP LEARNING 33

generalisability and accuracy [84]. Such conditions usually pose a parameter optimisation
problem within a Riemannian metric space rather than Euclidean space. Moreover, there
are several important applications, cf. in particular the next subsection, where the training
data and the parameters naturally lie in a Riemannian space.

While in section 2.3 we discussed the case when the training data and features lie on a
Riemannian manifold, in this section we consider the setting when the parameters belong
to a manifold. This in particular means that ordinary gradient descent a la (54), i.e. with
the gradient ∇ being the ordinary gradient in RL, does in general not describe steepest
descent of E in such a Riemannian metric space. Instead descent with respect to a metric-
induced gradient needs to be considered [5]. In what follows, we consider some representative
examples of how Riemannian optimisation could arise in the context of deep learning.

6.2.1. Network parameters evolving on manifolds. Assuming that the parameters to be
learned evolve on a manifold arises when additional structure or constraints are imposed
on the parameters. This is done to improve stability of the training algorithm and of the
trained model. Pioneering work advocating the use of Riemannian gradient and orthogo-
nality constraints can be found in [2, 3, 17] and there is an extensive follow up literature.
Examples of this procedure in the context of deep learning have recently appeared in [70]
and earlier in the context of CNNs in [27, 8]. It is crucial to implement efficiently the Rie-
mannian gradient descent making good use of the tensor structure of the data and of the
layers of the neural network, avoiding undesired increase in computational complexity. One
way to proceed is to introduce an evolution equation for θ and replace (7) by the extended
system of ODEs

ż = f(z, θ), (58)

θ̇ = g(θ). (59)

Of particular importance is the case where the second equation evolves on a Lie group G
or on a homogeneous manifold M = G/H.4 In [3] G is simply the general linear group,
while orthogonality constraints have been adopted in [66] in the context of independent
component analysis. Other concrete examples that we have in mind include the affine group,
the special Euclidean group SE(n), the special orthogonal group SO(n), the Stiefel manifold
Vn,p = SO(n)/SO(n− p) and the Grassmann manifold Gn,p = SO(n)/(SO(n− p)× SO(p))
including the n-sphere.

For matrix Lie groups G (and homogeneous manifolds) (59) can simply take the form of
a linear matrix differential equation

θ̇ = M(t) θ, θ ∈M
and M(t) ∈ g, and the optimisation can be performed in terms of the variable M . To
preserve the manifold structure one can consider a discretisations of this equation of the
form

θk+1 = exp(hMk)θk,

where exp : g→ G is the matrix exponential. This discretisation can be seen as the proto-
type for constructing local coordinates5 on the manifold of parameters. Alternatively any

4Here H is a closed Lie subgroup of G, and M := G/H the quotient with the manifold structure turning

π : G→ G/H π : g 7→ gH into a submersion. Then M becomes a homogeneous space for G with respect to

the transitive Lie group action induced by left multiplication.
5Otherwise called retraction maps [1].

34 CELLEDONI, EHRHARDT, ETMANN, MCLACHLAN, OWREN, SCHÖNLIEB AND SHERRY

approximation of the exponential map φ ≈ exp (e.g. by a rational approximant) preserving
the property φ : g → G, can be used to construct local parametrisations of the manifold6.
On homogeneous manifolds such as Vn,p and Gn,p additional structure on M(t) can be
exploited to reduce the computational cost of matrix exponentials and similar mappings
[19].

After time discretisation, this approach guarantees that the parameters at each layer of
the network belong to manifolds which are all naturally equipped with Riemannian metrics
and some of which are compact. In particular, a metric on G which is H-right invariant (i.e.
the right multiplication Rh with h ∈ H is an isometry) descends to a Riemannian metric
on M = G/H, [50]. Gradient descent techniques to train the network should then exploit
the Riemannian structure [2, 70]. A sufficient condition for convergence of Riemannian
gradient descent is that the manifolds are geodesically complete, [119, 113]. All Riemannian
homogeneous manifolds as well as compact Riemannian manifolds are geodesically complete
[75, IV.4].

6.2.2. Information Geometry. A special case of the Riemannian structure discussed in the
previous paragraph arises when taking into account the inherent statistical properties of
the underlying unknown distributions of training pairs and, connected to this, statistical
properties of the network parameters θ.

Treating the parameters θ as probability distributions, they can be modelled as elements
on a statistical manifold with an appropriate metric. A statistical manifold is a Riemannian
manifold whose points correspond to probability distributions. Gradient descent on statis-
tical manifolds is studied in information geometry. Here, the so-called natural gradient is
the proposed notion for gradient on a statistical manifold [2]. For an L-dimensional param-
eter space, equipped with a Riemannian metric tensor G = G(θ) = (gij(θ)) ∈ RL×L that
depends on θ, the natural gradient of E(θ) is defined as

∇̃E(θ) = G−1(θ)∇E(θ),

where ∇E(θ) denotes the ordinary gradient of E in RL. The natural metric considered in
this context is the Fisher information, with G being the Fisher information matrix of the
parameters θ. Natural gradient descent then reads

θ̇ = −G−1(θ)∇E(θ). (60)

In the case of E(θ) = 1
2N

∑N
n=1 ‖Ψ(xn, θ)−yn‖2 a squared error loss and G being the Fisher

information matrix, we have

G(θ) =
1

N

N∑
n=1

JTn Jn,

where Jn is the Jacobian of Ψ(xn, θ) with respect to θ, cf. [89]. Note that in this case
natural gradient descent, discretised with forward-Euler, is equivalent to Gauss-Newton
iteration [97]. This connection between natural gradient descent and (extended) Gauss-
Newton methods can be extended to more general losses as well [99]. In the continuum
limit, (60) is a gradient flow with respect to the Fisher-Rao metric, see [95, Definition 3.1.].

Several works [2, 4, 99] have demonstrated advantages of using the natural gradient over
the ordinary gradient in (54) for neural network training. The Riemannian structure seems

6An example for the case of SO(n) and Sp(n) is the Cayley transformation, used in the context of

invertible networks in section 4.1.3

STRUCTURE PRESERVING DEEP LEARNING 35

to help against the gradient descent being trapped in flat areas of the loss function’s surface
[123], and as a result the network to feature better generalisation capabilities, cf. [61, 72]
for different characterisations of flatness of the loss function’s surface.

6.3. Optimisation of 2-layer ReLU neural networks as Wasserstein gradient flows.
The inherent gradient flow structure of training neural networks also appears when studying
global optimality and generalisation properties of trained networks. Bach and Chizat [25]
pick up the gradient flow formulation of neural network learning and study convergence of the
learning problem (4) to a global minimiser of E for 2-layer ReLU neural networks Φ in the∞-
width limit. In particular, their analysis makes use of the structure of a Wasserstein gradient
flow formulation of (54) over the space of probability measures in the ∞-width network
limit. Proving convergence to a global minimiser of E also allows the study of optimal
generalisation capabilities of the trained 2-layer ReLU neural network by characterising the
limit (for a certain class of loss functions with exponential tails) as a max-margin classifier
[26].

In [25] they consider a 2-layer neural network of the form

Φ(θ, x) =
1

J

J∑
j=1

f(θj , x), (61)

where
f(θj , x) = cj max{atjx+ bj , 0},

for x ∈ RM and θj = (aj , bj , cj) ∈ RM+2. The weights θ in (61) are learned by minimising a

loss function such as (4) with optional regularisation R(θ) = λ
L

∑L
j=1 ‖θj‖22. In this setting,

they investigate the performance (generalisation capabilities) of the learned network Φ by
studying the associated gradient flow of the loss function E for initial weights θ(0) = θ0 ∼
i.i.d. µ0 ∈ P2(Rn+1)

θ̇ = −m∇E(θ, x). (62)

In particular, they analyse convergence of (62) in the ∞-width limit, which they prove can
be written as a Wasserstein gradient flow. More precisely, they parametrise the network Φ
with probability measures µ ∈ P2(Rd+2) as

Φ(µ, x) =

∫
Φ(θ, x) dµ(θ),

and the associated loss function as

E(µ) =
1

N

N∑
n=1

L(Φ(µ, xn), yn) + λ

∫
‖θ‖22 dµ(θ). (63)

In this setting they prove the following results.

Theorem 6.1 ([25]). Assume that

spt(µ0) ⊂ {|c|2 = ‖a‖22 + |b|2}.

As L → ∞, µt,L = 1
L

∑L
j=1 δθj (t) converges in P2(Rd+1) to µt, the unique Wasserstein

gradient flow of E in (63) starting in µ0.
Moreover, assuming µ0 is ‘diverse’ enough (cf. [25] for details). If µt converges to µ∞

in P2(Rd+1), then µ∞ is a global minimiser of E.

6.4. Open problems.

36 CELLEDONI, EHRHARDT, ETMANN, MCLACHLAN, OWREN, SCHÖNLIEB AND SHERRY

6.4.1. Port-Hamiltonian optimisation methods. Generally, investigating new optimisation
methods for E by considering different instances of Hamiltonian descent is a promising re-
search direction. Here, different choices of Hamiltonians or special cases of Hamiltonian
systems might be advantageous for classes of loss functions and network architectures, im-
posing different descent dynamics. A more concrete example are numerical schemes that
arise when symplectic numerical integration is applied to port-Hamiltonian systems (with
different Hamiltonians), cf. [115] for an introduction to port-Hamiltonian systems and [20]
for the development of structure preserving numerical integrators for port-Hamiltonian sys-
tems by using discrete gradient and splitting approaches. In [91] the authors design a loss
function and parameter optimisation dynamics of the network in such a way that the neural
network itself behaves like an autonomous port-Hamiltonian system. This in turn allows a
proof of convergence of the optimisation algorithm to a minimum of the loss. Taking this a
step further, port-Hamiltonian systems also lend themselves to the design of locally adaptive
optimisation schemes as the port-Hamiltonian structure is preserved under concatenation
of port-Hamiltonians with orthogonal input-output relation.

6.4.2. Convergence analysis for natural gradient optimisation. While several papers seem
to suggest (mostly empirically or for linear networks) that natural gradient descent helps
to mitigate nuisance curvature in the neural network parameter optimisation, very little
seems to have been done on this theoretically, in particular for nonlinear neural networks
[126]. In general, while for particular choices of the Riemannian metric (60) boils down to
classical optimisation schemes, such as Gauss-Newton for G being the Fisher information
metric, analytic results on convergence properties of natural gradient flow discretisations are
generally open. Indeed, the study of (60) for different choices of G could be very interesting.
For instance, if G is a BFGS approximation to the Hessian of E, then a stochastic method
was proposed and analysed in [117].

6.4.3. Studying generalization properties of neural networks by metric gradient flows. As
the example of the Wasserstein gradient flow in section 6.3 has shown, metric gradient flows
can serve as a useful tool for studying convergence of the network training and for the study
of generalisation properties of the minimisers [25, 26]. It would be interesting to see if
other metric gradient flows would also lend themselves to such an analysis. In connection
with information geometry in section 6.2.2 we have seen the gradient flow with respect to
the Fisher-Rao metric appearing. Could this be used to study convergence properties for
other network architectures, beyond 2-layer ReLU? Are there other metrics that could be
interesting to investigate for that purpose?

7. Conclusion

Structure-preserving approaches to deep learning are a mean to design neural networks
with guaranteed mathematical properties, as well as derive optimisation schemes that im-
prove their training and provide means for analysing their global optimality and generalisa-
tion capabilities. In this paper we are discussing some recent examples from this emerging
topic of structure-preserving deep learning. These include ODE and PDE parametrisa-
tions of neural networks for improved stability properties, an optimal control formulation
for neural network training that gives rise to systematic training and regularisation proce-
dures, invertible neural networks for large-scale deep learning, equivariant neural network
architectures for the design of neural networks that preserve group transformations, and

STRUCTURE PRESERVING DEEP LEARNING 37

structure-preserving training of neural networks by means of Hamiltonian descent and Rie-
mannian metric gradient flows. Together with the discussion of state-of-the-art results we
also suggest a range of open problems that we identified as interesting mathematical avenues
that could help to shed some more light onto the systematic design and training of deep
neural networks.

Acknowledgements

MJE would like to thank Matt Thorpe for fruitful discussions. MJE acknowledges support
from the EPSRC grants EP/S026045/1 and EP/T026693/1, the Faraday Institution via
EP/T007745/1, and the Leverhulme Trust fellowship ECF-2019-478.

CE and CBS acknowledge support from the Wellcome Innovator Award RG98755.
CBS acknowledges support from the Leverhulme Trust project on Breaking the non-

convexity barrier, the Philip Leverhulme Prize, the EPSRC grants EP/S026045/1 and
EP/T003553/1, the EPSRC Centre Nr. EP/N014588/1, European Union Horizon 2020
research and innovation programmes under the Marie Sk lodowska-Curie grant agreement
No. 777826 NoMADS and No. 691070 CHiPS, the Cantab Capital Institute for the Math-
ematics of Information and the Alan Turing Institute.

FS acknowledges support from the Cantab Capital Institute for the Mathematics of In-
formation.

EC and BO thank the SPIRIT project (No. 231632) under the Research Council of
Norway FRIPRO funding scheme.

The authors would like to thank the Isaac Newton Institute for Mathematical Sciences,
Cambridge, for support and hospitality during the programmes Variational methods and
effective algorithms for imaging and vision (2017) and Geometry, compatibility and structure
preservation in computational differential equations (2019) where work on this paper was
undertaken, EPSRC grant EP/K032208/1.

References

[1] Pierre-Antoine Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix

manifolds. Princeton University Press, Princeton, NJ, 2008. With a foreword by Paul Van Dooren.

[2] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–276,
1998.

[3] Shun-Ichi Amari, Andrzej Cichocki, and Howard Hua Yang. A new learning algorithm for blind signal

separation. Advances in neural information processing systems, pages 757–763, 1996.
[4] Shun-Ichi Amari and Scott C. Douglas. Why natural gradient? In Proceedings of the 1998 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181),
volume 2, pages 1213–1216. IEEE, 1998.

[5] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in the space
of probability measures. Springer Science & Business Media, 2008.

[6] Simon Arridge, Peter Maass, Ozan Öktem, and Carola-Bibiane Schönlieb. Solving inverse problems

using data-driven models. Acta Numerica, 28:1–174, 2019.

[7] Manuel Asorey, José F. Cariñena, and Luis A. Ibort. Generalized canonical transformations for time-
dependent systems. J. Math. Phys., 24(12):2745–2750, 1983.

[8] Gary Bécigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. In Interna-
tional Conference on Learning Representations, 2019.

[9] Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and Joern-Henrik Jacobsen.

Invertible residual networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings

of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 573–582, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

38 CELLEDONI, EHRHARDT, ETMANN, MCLACHLAN, OWREN, SCHÖNLIEB AND SHERRY

[10] Jens Behrmann, Paul Vicol, Kuan-Chieh Wang, Roger B. Grosse, and Jörn-Henrik Jacobsen. On the

invertibility of invertible neural networks, 2020.

[11] Erik J. Bekkers, Maxime W. Lafarge, Mitko Veta, Koen A. J. Eppenhof, Josien P. W. Pluim, and
Remco Duits. Roto-Translation Covariant Convolutional Networks for Medical Image Analysis. In

International Conference on Medical Image Computing and Computer-Assisted Intervention, pages

440–448. Springer, Cham, 2018.
[12] Martin Benning, Elena Celledoni, Matthias J. Ehrhardt, Brynjulf Owren, and Carola-Bibiane

Schönlieb. Deep learning as optimal control problems: models and numerical methods. Journal of

Computational Dynamics, 6(2):171–198, 2019.
[13] Ashish Bhatt, Dwayne Floyd, and Brian E Moore. Second order conformal symplectic schemes for

damped Hamiltonian systems. Journal of Scientific Computing, 66(3):1234–1259, 2016.
[14] Vladimir I. Bogachev. Measure theory, volume 1. Springer Science & Business Media, 2007.

[15] Helmut Bölcskei, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. Optimal Approximation with

Sparsely Connected Deep Neural Networks. SIAM Journal on Mathematics of Data Science, 1(1):8–45,
2019.

[16] J. Frédéric Bonnans. Course on Optimal Control, 2019. http://www.cmap.polytechnique.fr/ bon-

nans/notes/oc/ocbook.pdf.
[17] Jean-François Cardoso and Beate Hvam Laheld. Equivariant adaptive source separation. IEEE Trans-

actions on signal processing, 44:3017–3030, 1992.

[18] Elena Celledoni, Markus Eslitzbichler, and Alexander Schmeding. Shape analysis on Lie groups with
applications in computer animation. J. Geom. Mech., 8(3):273–304, 2016.

[19] Elena Celledoni and Simone Fiori. Neural learning by geometric integration of reduced ‘rigid-body’

equations. J. Comput. Appl. Math., 172(2):247–269, 2004.
[20] Elena Celledoni and Eirik Hoel Høiseth. Energy-Preserving and Passivity-Consistent Numerical Dis-

cretization of Port-Hamiltonian Systems. arXiv preprint arXiv:1706.08621, 2017.
[21] Elena Celledoni, H̊akon Marthinsen, and Brynjulf Owren. An introduction to Lie group integrators—

basics, new developments and applications. J. Comput. Phys., 257(part B):1040–1061, 2014.

[22] Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David Begert, and Elliot Holtham. Reversible
architectures for arbitrarily deep residual neural networks. In Thirty-Second AAAI Conference on

Artificial Intelligence, 2018.

[23] Tian Qi Chen, Jens Behrmann, David Duvenaud, and Jörn-Henrik Jacobsen. Residual flows for invert-
ible generative modeling. In Advances in Neural Information Processing Systems, pages 9913–9923,

2019.

[24] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. In Advances in Neural Information Processing Systems, pages 6572–6583, 2018.

[25] Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-parameterized

models using optimal transport. In Advances in neural information processing systems, pages 3036–
3046, 2018.

[26] Lénäıc Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. arXiv preprint arXiv:2002.04486, 2020.

[27] Minhyung Cho and Jaehyung Lee. Riemannian approach to batch normalization. In Advances in

Neural Information Processing Systems, pages 5225–5235, 2017.
[28] Marco Ciccone, Marco Gallieri, Jonathan Masci, Christian Osendorfer, and Faustino Gomez. NAIS-

Net: Stable deep networks from non-autonomous differential equations. In Advances in Neural Infor-
mation Processing Systems, pages 3025–3035, 2018.

[29] Christian Clason. Regularization of Inverse Problems, 2020. arXiv:2001.00617.
[30] Taco Cohen, Mario Geiger, and Maurice Weiler. A General Theory of Equivariant CNNs on Homoge-

neous Spaces. In Advances in Neural Information Processing Systems 32, pages 9145—-9156, 2019.
[31] Taco S. Cohen, Mario Geiger, Jonas Koehler, and Max Welling. Spherical CNNs, 2018.

arxiv:1801.10130.
[32] Taco S. Cohen and Max Welling. Group Equivariant Convolutional Networks. In International con-

ference on machine learning, pages 2990–2999, 2016.
[33] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust-Region Methods, volume 1 of

MPS-SIAM Series on Optimization. MPS/SIAM, Philadelphia, 2000.

STRUCTURE PRESERVING DEEP LEARNING 39

[34] Phil Cook, Yu Bai, Shahrum Nedjati-Gilani, Kiran Seunarine, Matt Hall, Geoffrey Parker, and Daniel

Alexander. Camino: Open-Source Diffusion-MRI Reconstruction and Processing. In Proc.14th Sci.

Meeting of ISMRM, Seattle WA, USA, volume 2759, 2006.
[35] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,

Signals, and Systems, 2(4):303–314, 1989.

[36] Germund Dahlquist. Generalized disks of contractivity for explicit and implicit Runge-Kutta methods.
Technical report, CM-P00069451, 1979.

[37] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale

hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee, 2009.

[38] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear independent components esti-
mation. arXiv preprint arXiv:1410.8516, 2014.

[39] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP. arXiv

preprint arXiv:1605.08803, 2016.
[40] Simon S. Du, Yining Wang, Xiyu Zhai, Sivaraman Balakrishnan, Ruslan Salakhutdinov, and Aarti

Singh. How Many Samples are Needed to Estimate a Convolutional or Recurrent Neural Network?

arxiv:1805.07883, 2018.
[41] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient Projections onto

the l1-ball for Learning in High dimensions. In Proceedings of the 25th International Conference on

Machine Learning - ICML, pages 272–279, 2008.
[42] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented Neural ODEs. In Advances in Neural

Information Processing Systems, 2019.

[43] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. In Ad-
vances in Neural Information Processing Systems, pages 7509–7520, 2019.

[44] Weinan E. A Proposal on Machine Learning via Dynamical Systems. Communications in Mathematics
and Statistics, 5(1):1–11, 2017.

[45] Weinan E, Jiequn Han, and Qianxiao Li. A Mean-Field Optimal Control Formulation of Deep Learning.

arXiv:1807.01083v1, 2018.
[46] Heinz Werner Engl, Martin Hanke, and Andreas Neubauer. Regularization of Inverse Problems. Math-

ematics and Its Applications. Springer, 1996.

[47] Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis. Learning SO(3)
Equivariant Representations with Spherical CNNs. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 52–68, 2018.

[48] Christian Etmann, Rihuan Ke, and Carola-Bibiane Schönlieb. iUNets: Fully invertible U-Nets with
learnable up-and downsampling. arXiv preprint arXiv:2005.05220, 2020.

[49] Guilherme França, Jeremias Sulam, Daniel P. Robinson, and René Vidal. Conformal symplectic and

relativistic optimization. arXiv preprint arXiv:1903.04100, 2019.
[50] Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine. Riemannian geometry. Universitext.

Springer-Verlag, Berlin, third edition, 2004.

[51] Nicolás Garćıa Trillos and Dejan Slepčev. Continuum Limit of Total Variation on Point Clouds. Archive
for Rational Mechanics and Analysis, 220(1):193–241, 2016.

[52] Amir Gholami, Kurt Keutzer, and George Biros. ANODE: Unconditionally accurate memory-efficient
gradients for neural ODEs. In IJCAI International Joint Conference on Artificial Intelligence, volume

2019-Augus, pages 730–736, 2019.
[53] Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B. Grosse. The reversible residual network:

Backpropagation without storing activations. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing

Systems 30, pages 2214–2224. Curran Associates, Inc., 2017.
[54] Thomas H. Grönwall. Note on the Derivatives with Respect to a Parameter of the Solutions of a

System of Differential Equations. Annals of Mathematics, 20(4):292–296, 1919.
[55] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems,

34(1):014004, 2017.
[56] William W. Hager. Runge-Kutta methods in optimal control and the transformed adjoint system.

Numerische Mathematik, 87(2):247–282, 2000.

40 CELLEDONI, EHRHARDT, ETMANN, MCLACHLAN, OWREN, SCHÖNLIEB AND SHERRY

[57] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical integration: structure-

preserving algorithms for ordinary differential equations, volume 31. Springer Science & Business

Media, 2006.
[58] Ernst Hairer, Syvert P. Nørsett, and Gerhard Wanner. Solving Ordinary Differential Equations I.

Springer Series in Computational Mathematics. Springer-Verlag Berlin Heidelberg, 2 edition, 1993.

[59] Ernst Hairer and Gerhard Wanner. Solving ordinary differential equations. II, volume 14 of Springer
Series in Computational Mathematics. Springer-Verlag, Berlin, 2010. Stiff and differential-algebraic

problems, Second revised edition, paperback.

[60] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.

[61] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, 1997.
[62] Emiel Hoogeboom, Rianne Van Den Berg, and Max Welling. Emerging convolutions for generative

normalizing flows. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the

36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 2771–2780, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

[63] John J. Hopfield. Neural networks and physical systems with emergent collective computational abil-

ities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.
[64] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks,

4(2):251–257, 1991.

[65] Michael F. Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian smooth-
ing splines. Communications in Statistics-Simulation and Computation, 19(2):433–450, 1990.

[66] Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms and applications. Neural

Networks, 13:411–430, 2000.
[67] Arieh Iserles, Hans Z. Munthe-Kaas, Syvert P. Nørsett, and Antonella Zanna. Lie-group methods. In

Acta numerica, 2000, volume 9 of Acta Numer., pages 215–365. Cambridge Univ. Press, Cambridge,
2000.

[68] Kazufumi Ito and Bangti Jin. Inverse Problems - Tikhonov Theory and Algorithms. World Scientific,

2014.
[69] Jrn-Henrik Jacobsen, Arnold W.M. Smeulders, and Edouard Oyallon. i-RevNet: Deep invertible net-

works. In International Conference on Learning Representations, 2018.

[70] Sinisa Todorovic Jun Li, Li Fuxin. Efficient Riemannian optimization on the Stiefel manifold via the
Cayley transform. In ICLR 2020, 2020.

[71] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adver-

sarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4401–4410, 2019.

[72] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter

Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In ICLR,
2017.

[73] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
[74] Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.

In Advances in Neural Information Processing Systems, pages 10215–10224, 2018.

[75] Shoshichi Kobayashi and Katsumi Nomizu. Foundations of differential geometry. Vol. I. Wiley Classics
Library. John Wiley & Sons, Inc., New York, 1996. Reprint of the 1963 original, A Wiley-Interscience

Publication.
[76] Risi Kondor, Zhen Lin, and Shubhendu Trivedi. ClebschGordan Nets: a Fully Fourier Space Spherical

Convolutional Neural Network, 2018.
[77] Risi Kondor and Shubhendu Trivedi. On the Generalization of Equivariance and Convolution in Neural

Networks to the Action of Compact Groups. arxiv:1802.03690, 2018.
[78] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification with Deep Convo-

lutional Neural Networks, 2012.
[79] Carnegie Mellon University Graphics Lab. Motion capture database. http://mocap.cs.cmu.edu/, 2003.
[80] Yann LeCun. A theoretical framework for back-propagation. In Proceedings of the 1988 connectionist

models summer school, volume 1, pages 21–28. CMU, Pittsburgh, Pa: Morgan Kaufmann, 1988.
[81] Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time series, 1998.

[82] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.

STRUCTURE PRESERVING DEEP LEARNING 41

[83] Yann LeCun, Bernhard Boser, John S. Denker, Donnie Henderson, Richard E. Howard, Wayne Hub-

bard, and Lawrence D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural

computation, 1(4):541–551, 1989.
[84] Jun Li, Fuxin Li, and Sinisa Todorovic. Efficient Riemannian Optimization on the Stiefel Manifold via

the Cayley Transform. In International Conference on Learning Representations, 2019.

[85] Qianxiao Li, Long Chen, Cheng Tai, and Weinan E. Maximum principle based algorithms for deep
learning. Journal of Machine Learning Research, 18:1–29, 2018.

[86] Seppo Linnainmaa. The representation of the cumulative rounding error of an algorithm as a taylor

expansion of the local rounding errors. Master’s Thesis (in Finnish), Univ. Helsinki, pages 6–7, 1970.
[87] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks: Bridging

deep architectures and numerical differential equations. In 6th International Conference on Learning
Representations, ICLR 2018 - Workshop Track Proceedings, 2018.

[88] Chris J Maddison, Daniel Paulin, Yee Whye Teh, Brendan O’Donoghue, and Arnaud Doucet. Hamil-

tonian descent methods. arXiv preprint arXiv:1809.05042, 2018.
[89] James Martens. New insights and perspectives on the natural gradient method. arXiv preprint

arXiv:1412.1193, 2014.

[90] H̊akon Marthinsen and Brynjulf Owren. Geometric integration of non-autonomous linear Hamiltonian
problems. Adv. Comput. Math., 42(2):313–332, 2016.

[91] Stefano Massaroli, Michael Poli, Federico Califano, Angela Faragasso, Jinkyoo Park, Atsushi Ya-

mashita, and Hajime Asama. Port-Hamiltonian approach to neural network training. arXiv preprint
arXiv:1909.02702, 2019.

[92] Robert McLachlan and Matthew Perlmutter. Conformal Hamiltonian systems. Journal of Geometry

and Physics, 39(4):276–300, 2001.
[93] Robert I. McLachlan and G. Reinout W. Quispel. Splitting methods. Acta Numer., 11:341–434, 2002.

[94] Robert I. McLachlan, G. Reinout W. Quispel, and Nicolas Robidoux. Geometric integration using
discrete gradients. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357(1754):1021–1045,

1999.

[95] Klas Modin. Geometry of matrix decompositions seen through optimal transport and information
geometry. arXiv preprint arXiv:1601.01875, 2016.

[96] Andrew Y. Ng. Feature selection, L1 vs. L2 regularization, and rotational invariance. Proceedings of

the 21 st International Conference on Machine Learning, 2004.
[97] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business Media, 2006.

[98] Brendan O’Donoghue and Chris J. Maddison. Hamiltonian descent for composite objectives. In Ad-

vances in Neural Information Processing Systems, pages 14443–14453, 2019.
[99] Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. arXiv preprint

arXiv:1301.3584, 2013.

[100] Philipp Petersen and Felix Voigtlaender. Equivalence of approximation by convolutional neural net-
works and fully-connected networks. Proceedings of the American Mathematical Society, 148(4):1567–

1581, 2019.
[101] L S Pontryagin. Mathematical Theory of Optimal Processes. Classics of Soviet Mathematics. Taylor

& Francis, 1987.

[102] Patrick Putzky and Max Welling. Invert to learn to invert. In Advances in Neural Information Pro-
cessing Systems 32, pages 446–456. Curran Associates, Inc., 2019.

[103] Marc’Aurelio Ranzato, Y-Lan Boureau, and Yann Le Cun. Sparse feature learning for deep belief net-
works. Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference,
2009.

[104] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond. In ICLR,

2018.
[105] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Pro-

ceedings of the 32nd International Conference on International Conference on Machine Learning -
Volume 37, ICML15, page 15301538. JMLR.org, 2015.

[106] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pages 400–407, 1951.

[107] Fabio Rocca, Claudio Maria Prato, and Alessandro Ferretti. An overview of ERS-SAR interferometry.
In Proceedings of the 3rdERS Symposium on Space at the Service of our Environment, Florence, Italy,
1997.

42 CELLEDONI, EHRHARDT, ETMANN, MCLACHLAN, OWREN, SCHÖNLIEB AND SHERRY

[108] Lars Ruthotto and Eldad Haber. Deep Neural Networks Motivated by Partial Differential Equations.

Journal of Mathematical Imaging and Vision, 2019.

[109] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

[110] Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and Tom Goldstein. Training

Neural Networks Without Gradients: A Scalable ADMM Approach. In ICML, 2016.
[111] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.

Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds.

arxiv:1802.08219, 2018.
[112] Matthew Thorpe and Yves van Gennip. Deep limits of residual neural networks. arXiv preprint

arXiv:1810.11741, 2018.
[113] Constantin Udrişte. Convex functions and optimization methods on Riemannian manifolds, volume

297 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1994.

[114] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep Image Prior. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 9446–9454, 2018.

[115] Arjan van der Schaft and Dimitri Jeltsema. Port-Hamiltonian systems theory: An introductory

overview. Foundations and Trends in Systems and Control, 1(2-3):173–378, 2014.
[116] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol.

Stacked denoising autoencoders: learning useful representations in a deep network with a local denois-

ing criterion. J. Mach. Learn. Res., 11:3371–3408, 2010.
[117] Xiao Wang, Shiqian Ma, Donald Goldfarb, and Wei Lu. Stochastic Quasi-Newton Methods for Non-

convex Stochastic Optimization. SIAM Journal on Optimization, 27(2):927–956, 2017.

[118] Maurice Weiler, Fred A. Hamprecht, and Martin Storath. Learning Steerable Filters for Rotation Equi-
variant CNNs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 849–858, 2018.
[119] Andreas Weinmann, Laurent Demaret, and Martin Storath. Total variation regularization for manifold-

valued data. SIAM J. Imaging Sci., 7(4):2226–2257, 2014.

[120] Christopher S. Withers and Saralees Nadarajah. log det A = tr log A. International Journal of
Mathematical Education in Science and Technology, 41(8):1121–1124, 2010.

[121] Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, and Gabriel J. Brostow. Harmonic

Networks: Deep Translation and Rotation Equivariance, 2017.
[122] Yuchen Xie, Richard H. Byrd, and Jorge Nocedal. Analysis of the BFGS Method with Errors. SIAM

Journal on Optimization, 30(1):182–209, 2020.

[123] Howard Hua Yang and Shun-ichi Amari. Natural gradient descent for training multi-layer perceptrons.
Submitted to IEEE Tr. on Neural Networks, 1997.

[124] Dmitry Yarotsky. Universal approximations of invariant maps by neural networks. arxiv:1804.10306,

2018.
[125] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods

for nonconvex optimization. In Advances in neural information processing systems, pages 9793–9803,
2018.

[126] Guodong Zhang, James Martens, and Roger B Grosse. Fast convergence of natural gradient descent

for over-parameterized neural networks. In Advances in Neural Information Processing Systems, pages
8080–8091, 2019.

[127] Linan Zhang and Hayden Schaeffer. Forward Stability of ResNet and Its Variants. Journal of Mathe-
matical Imaging and Vision, 62(3):328–351, 2020.

	1. Introduction
	1.1. Neural Networks
	1.2. Residual Networks and Differential Equations

	2. Neural networks inspired by differential equations
	2.1. Structure preserving ODE formulations
	2.2. Structure preserving numerical methods for the ODE model
	2.3. Features evolving on Lie groups or homogeneous manifolds
	2.4. Open problems

	3. Deep Learning meets Optimal Control
	3.1. Training algorithms
	3.2. Regularisation
	3.3. Deep limits
	3.4. Open problems

	4. Invertible neural networks and normalising flows
	4.1. Types of invertible layers
	4.2. Applications
	4.3. Open problems

	5. Equivariant neural networks
	5.1. Equivariant transformations of feature maps on homogeneous spaces
	5.2. A numerical demonstration of the use of equivariant neural networks
	5.3. Open problems

	6. Structure-exploiting learning
	6.1. Conformal Hamiltonian systems
	6.2. Learning in Riemannian metric spaces
	6.3. Optimisation of 2-layer ReLU neural networks as Wasserstein gradient flows
	6.4. Open problems

	7. Conclusion
	Acknowledgements
	References

