6,966 research outputs found
A simple model for the evolution of a non-Abelian cosmic string network
In this paper we present the results of numerical simulations intended to
study the behavior of non-Abelian cosmic strings networks. In particular we are
interested in discussing the variations in the asymptotic behavior of the
system as we variate the number of generators for the topological defects. A
simple model which should generate cosmic strings is presented and its lattice
discretization is discussed. The evolution of the generated cosmic string
networks is then studied for different values for the number of generators for
the topological defects. Scaling solution appears to be approached in most
cases and we present an argument to justify the lack of scaling for the
residual cases
Adaptive spectral identification techniques in presence of undetected non linearities
The standard procedure for detection of gravitational wave coalescing
binaries signals is based on Wiener filtering with an appropriate bank of
template filters. This is the optimal procedure in the hypothesis of addictive
Gaussian and stationary noise. We study the possibility of improving the
detection efficiency with a class of adaptive spectral identification
techniques, analyzing their effect in presence of non stationarities and
undetected non linearities in the noiseComment: 4 pages, 2 figures, uses ws-procs9x6.cls Proceedings of "Non linear
physics: theory and experiment. II", Gallipoli (Lecce), 200
Efficiency of different matrix inversion methods applied to Wilson fermions
We compare different conjugate gradient -- like matrix inversion methods (CG,
BiCGstab1 and BiCGstab2) employing for this purpose the compact lattice quantum
electrodynamics (QED) with Wilson fermions. The main goals of this
investigation are the CPU time efficiency of the methods as well as the
influence of machine precision on the reliability of (physical) results
especially close to the 'critical' line ~\kappa_c(\bt).Comment: 27 pages LaTeX (epsf), all figures include
Improving the sensitivity of future GW observatories in the 1-10 Hz band: Newtonian and seismic noise
The next generation gravitational wave interferometric detectors will likely be underground detectors to extend the GW detection frequency band to frequencies below the Newtonian noise limit. Newtonian noise originates from the continuous motion of the Earth’s crust driven by human activity, tidal stresses and seismic motion, and from mass density fluctuations in the atmosphere. It is calculated that on Earth’s surface, on a typical day, it will exceed the expected GW signals at frequencies below 10 Hz. The noise will decrease underground by an unknown amount. It is
important to investigate and to quantify this expected reduction and its effect on the sensitivity of future detectors, to plan for further improvement strategies. We report about some of these aspects. Analytical models can be used in the simplest scenarios to get a better qualitative and semi-quantitative understanding. As more complete modeling can be done numerically, we will discuss also some results obtained with a finite-element-based modeling tool. The method is verified by comparing its results with the results of analytic calculations for surface detectors. A key point about noise models is their initial parameters and conditions, which require detailed information about seismic motion in a real scenario. We will describe an effort to characterize the seismic activity at the Homestake mine which is currently in progress. This activity is specifically aimed to provide informations and to explore the site as a possible candidate for an underground observatory. Although the only compelling reason to put the interferometer underground is to reduce the Newtonian noise, we expect that the more stable underground environment will have a more general positive impact on the sensitivity.We will end this report with some considerations about seismic and suspension noise
Structural validation of a realistic wing structure: the RIBES test article
Several experimental test cases are available in literature to study and validate fluid structure interaction methods. They, however,
focus the attention mainly on replicating typical cruising aerodynamic conditions forcing the adoption of fully steel made models
able to operate with the high loads generated in high speed facilities. This translates in a complete loss of similitude with typical
realistic aeronautical wing structures configurations. To reverse this trend, and to better study the aerolastic mechanism from a structural point of view, an aeroelastic measurement campaign was carried within the EU RIBES project. A half wing model for wind tunnel tests was designed and manufactured replicating a typical metallic wing box structure, producing a database of loads, pressure, stress and deformation measurements. In this paper the design, manufacturing and validation activities performed within the RIBES project are described, with a focus on the structural behavior of the test article. All experimental data and numerical models are made freely available to the scientific community
Stabilization of a Fabry-Perot interferometer using a suspension-point interferometer
A suspension-point interferometer (SPI) is an auxiliary interferometer for
active vibration isolation, implemented at the suspension points of the mirrors
of an interferometric gravitational wave detector. We constructed a prototype
Fabry-Perot interferometer equipped with an SPI and observed vibration
isolation in both the spectrum and transfer function. The noise spectrum of the
main interferometer was reduced by 40 dB below 1 Hz. Transfer function
measurements showed that the SPI also produced good vibration suppression above
1 Hz. These results indicate that SPI can improve both the sensitivity and the
stability of the interferometer.Comment: 14 pages, 8 figures; added discussion; to be published in Physics
Letters
On line power spectra identification and whitening for the noise in interferometric gravitational wave detectors
In this paper we address both to the problem of identifying the noise Power
Spectral Density of interferometric detectors by parametric techniques and to
the problem of the whitening procedure of the sequence of data. We will
concentrate the study on a Power Spectral Density like the one of the
Italian-French detector VIRGO and we show that with a reasonable finite number
of parameters we succeed in modeling a spectrum like the theoretical one of
VIRGO, reproducing all its features. We propose also the use of adaptive
techniques to identify and to whiten on line the data of interferometric
detectors. We analyze the behavior of the adaptive techniques in the field of
stochastic gradient and in the
Least Squares ones.Comment: 28 pages, 21 figures, uses iopart.cls accepted for pubblication on
Classical and Quantum Gravit
The CP asymmetry for B--> K^* l^+ l^- decay in the general two Higgs doublet model
We study CP asymmetry for the exclusive decay B --> K^* l^+ l^- in the two
Higgs doublet model with three level flavor changing neutral currents (model
III). We analyse the dependency of this quantity to the new phase coming from
the complex Yukawa couplings in the theory and we find that there exist a
considerable CP violation for the relevant process. Further, we see that the
sign of the Wilson coefficient C_7^{eff} can be determined by fixing dilepton
mass. Therefore, the future measurements of CP asymmetry for B --> K^* l^+ l^-
decay will give a powerful information about the sign of Wilson coefficient
C_{7}^{eff} and the new physics beyond the SM.Comment: 22 pages, 8 figure
LIGO End-to-End simulation Program
A time-domain simulation program has been developed to provide an accurate description of interferometric gravitational wave detectors. This is being utilized to build a model of LIGO with the aim of aiding in the shakedown and integration of the interferometer subsystems, and ultimately the optimization of detector sensitivity
- …
