19 research outputs found

    Eco-design of Emerging Photovoltaic (PV) Cells

    No full text

    Private and Externality Costs and Benefits of Recycling Crystalline Silicon (c-Si) Photovoltaic Panels

    No full text
    With solar photovoltaics (PV) playing an increasing role in our global energy market, it is now timely and critical to understand the end of life management of the solar panels. Recycling the panels can be an important pathway, possibly recovering a considerable amount of materials and adding economic benefits from currently installed solar panels. Yet, to date, the costs and benefits of recycling, especially when externality costs resulting from environmental pollution are considered, are largely unknown. In this study, we quantified the private and externality costs and benefits of recycling crystalline silicon (c-Si) PV panels. We found that the private cost of end-of-life (EoL) management of the c-Si PV module is USD 6.7/m2 and much of this cost is from transporting (USD 3.3/m2) and landfilling (USD 3.1/m2), while the actual recycling process (the cost of consumed materials, electricity or the investment for the recycling facilities) is very small (USD 0.3/m2). We found that the external cost of PV EoL management is very similar to the private cost (USD 5.2/m2). Unlike the breakdown of the private costs, much of the externality costs (USD 4.08/m2) come from the recycling process, which suggests that more environmentally friendly methods (e.g., recycling methods that involve fewer toxic chemicals, acids, etc.) should be preferred. We estimated that the total economic value of the recycled materials from c-Si PV waste is USD 13.6/m2. This means that when externality costs are not considered, the net benefit of recycling is USD 6.7; when the externality cost of recycling is considered, there is still a net benefit of USD 1.19 per m2

    Emerging Photovoltaic (PV) Materials for a Low Carbon Economy

    No full text
    Emerging photovoltaic (PV) technologies have a potential to address the shortcomings of today’s energy market which heavily depends on the use of fossil fuels for electricity generation. We created inventories that offer insights into the environmental impacts and cost of all the materials used in emerging PV technologies, including perovskites, polymers, Cu2ZnSnS4 (CZTS), carbon nanotubes (CNT), and quantum dots. The results show that the CO2 emissions associated with the absorber layers are much less than the CO2 emissions associated with the contact and charge selective layers. The CdS (charge selective layer) and ITO (contact layer) have the highest environmental impacts compared to Al2O3, CuI, CuSCN, MoO3, NiO, poly (3-hexylthiophene-2,5-diyl (P3HT)), phenyl-C61-butyric acid methyl ester (PCBM), poly polystyrene sulfonate (PEDOT:PSS), SnO2, spiro-OMeTAD, and TiO2 (charge selective layers) and Al, Ag, Cu, FTO, Mo, ZnO:In, and ZnO/ZnO:Al (contact layers). The cost assessments show that the organic materials, such as polymer absorbers, CNT, P3HT and spiro-OMeTAD, are the most expensive materials. Inorganic materials would be more preferable to lower the cost of solar cells. All the remaining materials have a potential to be used in the commercial PV market. Finally, we analyzed the cost of PV materials based on their material intensity and CO2 emissions, and concluded that the perovskite absorber will be the most eco-efficient material that has the lowest cost and CO2 emissions

    A surgical and anatomo-histological study on Transoral Endoscopic Thyroidectomy Vestibular Approach (TOETVA)

    No full text
    Tomruk, Canberk/0000-0002-3810-3705; celik, servet/0000-0002-1102-4417; uyanikgil, Yigit/0000-0002-4016-0522WOS: 000513015900007PubMed: 31147826Background the number of TOETVA surgeries has increased worldwide but the anatomical passage of trocars is not clearly defined. We aimed to define detailed surgical anatomical passage of the trocars in cadavers. the incisions in oral vestibule, anatomical pathways of trocars, affected mimetic muscles, neurovascular relations of trocars and histological correlation of surgical anatomy were investigated. Methods Four cadavers and 6 six patient oral vestibules were used. the locations of optimised vestibular incisions were measured photogrammetrically. Initial steps of TOETVA surgery were performed on cadavers according to those optimal incisions. TOETVA preformed cadavers dissected to determine anatomical passages of the trocars. Afterwards, flap of lower lip and chin were zoned by software appropriate to the trocars routes. Histological analyses of the zones were made in correlation with dissections. Results Mimetic muscles associated with median (MT) and lateral trocars (LT) are orbicularis oris, mentalis, depressor anguli oris, depressor labii inferioris and platysma muscles. Trocars affect mimetic muscles in the perioral, chin and submental regions in different ways. the risk of mental nerve injury by MT is low. LT pass through the DLI muscle. the transmission of LT to the subplatysmal plane in the submental regions can be in two different ways. the arterial injury risk is higher with LT than the MT. Conclusions the surgical anatomy of the perioral, chin and submental regions for the initial TOETVA steps has been defined. Detailed surgical anatomical passages of the MT and LT were determined. Anatomical pattern to reach subplatysmal plane are presented. Mimetic muscles effected by trocars were determined. Endocrine surgeons should know the anatomical passage of TOETVA trocars

    Environmental Impacts from Photovoltaic Solar Cells Made with Single Walled Carbon Nanotubes

    No full text
    An ex-ante life cycle inventory was developed for single walled carbon nanotube (SWCNT) PV cells, including a laboratory-made 1% efficient device and an aspirational 28% efficient four-cell tandem device. The environmental impact of unit energy generation from the mono-Si PV technology was used as a reference point. Compared to monocrystalline Si (mono-Si), the environmental impacts from 1% SWCNT was ∼18 times higher due mainly to the short lifetime of three years. However, even with the same short lifetime, the 28% cell had lower environmental impacts than mono-Si. The effects of lifetime and efficiency on the environmental impacts were further examined. This analysis showed that if the SWCNT device efficiency had the same value as the best efficiency of the material under comparison, to match the total normalized impacts of the mono- and poly-Si, CIGS, CdTe, and a-Si devices, the SWCNT devices would need a lifetime of 2.8, 3.5, 5.3, 5.1, and 10.8 years, respectively. It was also found that if the SWCNT PV has an efficiency of 4.5% or higher, its energy payback time would be lower than other existing and emerging PV technologies. The major impacts of SWCNT PV came from the cell’s materials synthesis

    Ecological network analysis of growing tomatoes in an urban rooftop greenhouse

    No full text
    Unidad de excelencia María de Maeztu MdM-2015-0552Urban agriculture has emerged as an alternative to conventional rural agriculture seeking to foster a sustainable circular economy in cities. When considering the feasibility of urban agriculture and planning for the future of food production and energy, it is important to understand the relationships between energy flows throughout the system, identify their strengths and weaknesses, and make suggestions to optimize the system. To address this need, we analyzed the energy flows for growing tomatoes at a rooftop greenhouse (RTG). We used life cycle assessment (LCA) to identify the flows within the supply chain. We further analyzed these flows using ecological network analysis (ENA), which allowed a comparison of the industrial system to natural systems. Going beyond LCA, ENA also allowed us to focus more on the relationships between components. Similar to existing ENA studies on urban metabolism, our results showed that the RTG does not mimic the perfect pyramidal structure found in natural ecosystems due to the system's dependency on fossil fuels throughout the supply chain and each industry's significant impact on wasted energy. However, it was discovered that the RTG has strong foundational relationships in its industries, demonstrating overall positive utility; this foundation can be improved by using more renewable energy and increasing the recycling rates throughout the supply chain, which will in turn improve the hierarchy of energy flows and overall energy consumption performance of the system

    Ecological network analysis of growing tomatoes in an urban rooftop greenhouse

    Get PDF
    Urban agriculture has emerged as an alternative to conventional rural agriculture seeking to foster a sustainable circular economy in cities. When considering the feasibility of urban agriculture and planning for the future of food production and energy, it is important to understand the relationships between energy flows throughout the system, identify their strengths and weaknesses, and make suggestions to optimize the system. To address this need, we analyzed the energy flows for growing tomatoes at a rooftop greenhouse (RTG). We used life cycle assessment (LCA) to identify the flows within the supply chain. We further analyzed these flows using ecological network analysis (ENA), which allowed a comparison of the industrial system to natural systems. Going beyond LCA, ENA also allowed us to focus more on the relationships between components. Similar to existing ENA studies on urban metabolism, our results showed that the RTG does not mimic the perfect pyramidal structure found in natural ecosystems due to the system's dependency on fossil fuels throughout the supply chain and each industry's significant impact on wasted energy. However, it was discovered that the RTG has strong foundational relationships in its industries, demonstrating overall positive utility; this foundation can be improved by using more renewable energy and increasing the recycling rates throughout the supply chain, which will in turn improve the hierarchy of energy flows and overall energy consumption performance of the system.Peer ReviewedPostprint (author's final draft

    Ecological network analysis of growing tomatoes in an urban rooftop greenhouse

    No full text
    Urban agriculture has emerged as an alternative to conventional rural agriculture seeking to foster a sustainable circular economy in cities. When considering the feasibility of urban agriculture and planning for the future of food production and energy, it is important to understand the relationships between energy flows throughout the system, identify their strengths and weaknesses, and make suggestions to optimize the system. To address this need, we analyzed the energy flows for growing tomatoes at a rooftop greenhouse (RTG). We used life cycle assessment (LCA) to identify the flows within the supply chain. We further analyzed these flows using ecological network analysis (ENA), which allowed a comparison of the industrial system to natural systems. Going beyond LCA, ENA also allowed us to focus more on the relationships between components. Similar to existing ENA studies on urban metabolism, our results showed that the RTG does not mimic the perfect pyramidal structure found in natural ecosystems due to the system's dependency on fossil fuels throughout the supply chain and each industry's significant impact on wasted energy. However, it was discovered that the RTG has strong foundational relationships in its industries, demonstrating overall positive utility; this foundation can be improved by using more renewable energy and increasing the recycling rates throughout the supply chain, which will in turn improve the hierarchy of energy flows and overall energy consumption performance of the system.Peer Reviewe
    corecore