520 research outputs found
Surface Plasmon Excitation of Second Harmonic light: Emission and Absorption
We aim to clarify the role that absorption plays in nonlinear optical
processes in a variety of metallic nanostructures and show how it relates to
emission and conversion efficiency. We define a figure of merit that
establishes the structure's ability to either favor or impede second harmonic
generation. Our findings suggest that, despite the best efforts embarked upon
to enhance local fields and light coupling via plasmon excitation, nearly
always the absorbed harmonic energy far surpasses the harmonic energy emitted
in the far field. Qualitative and quantitative understanding of absorption
processes is crucial in the evaluation of practical designs of plasmonic
nanostructures for the purpose of frequency mixing
Spontaneous and Stimulated Raman Scattering near Metal Nanostructures in the Ultrafast, High-Intensity regime
The inclusion of atomic inversion in Raman scattering can significantly alter
field dynamics in plasmonic settings. Our calculations show that large local
fields and femtosecond pulses combine to yield: (i) population inversion within
hot spots; (ii) gain saturation; and (iii) conversion efficiencies
characterized by a switch-like transition to the stimulated regime that spans
twelve orders of magnitude. While in Raman scattering atomic inversion is
usually neglected, we demonstrate that in some circumstances full accounting of
the dynamics of the Bloch vector is required
A Dynamical Model of Harmonic Generation in Centrosymmetric Semiconductors
We study second and third harmonic generation in centrosymmetric
semiconductors at visible and UV wavelengths in bulk and cavity environments.
Second harmonic generation is due to a combination of symmetry breaking, the
magnetic portion of the Lorentz force, and quadrupolar contributions that
impart peculiar features to the angular dependence of the generated signals, in
analogy to what occurs in metals. The material is assumed to have a non-zero,
third order nonlinearity that gives rise to most of the third harmonic signal.
Using the parameters of bulk Silicon we predict that cavity environments can
significantly modify second harmonic generation (390nm) with dramatic
improvements for third harmonic generation (266nm). This occurs despite the
fact that the harmonics may be tuned to a wavelength range where the dielectric
function of the material is negative: a phase locking mechanism binds the pump
to the generated signals and inhibits their absorption. These results point the
way to novel uses and flexibility of materials like Silicon as nonlinear media
in the visible and UV ranges
Fano collective resonance as complex mode in a two dimensional planar metasurface of plasmonic nanoparticles
Fano resonances are features in transmissivity/reflectivity/absorption that
owe their origin to the interaction between a bright resonance and a dark
(i.e., sub-radiant) narrower resonance, and may emerge in the optical
properties of planar two-dimensional (2D) periodic arrays (metasurfaces) of
plasmonic nanoparticles. In this Letter, we provide a thorough assessment of
their nature for the general case of normal and oblique plane wave incidence,
highlighting when a Fano resonance is affected by the mutual coupling in an
array and its capability to support free modal solutions. We analyze the
representative case of a metasurface of plasmonic nanoshells at ultraviolet
frequencies and compute its absorption under TE- and TM-polarized, oblique
plane-wave incidence. In particular, we find that plasmonic metasurfaces
display two distinct types of resonances observable as absorption peaks: one is
related to the Mie, dipolar resonance of each nanoparticle; the other is due to
the forced excitation of free modes with small attenuation constant, usually
found at oblique incidence. The latter is thus an array-induced collective Fano
resonance. This realization opens up to manifold flexible designs at optical
frequencies mixing individual and collective resonances. We explain the
physical origin of such Fano resonances using the modal analysis, which allows
to calculate the free modes with complex wavenumber supported by the
metasurface. We define equivalent array dipolar polarizabilities that are
directly related to the absorption physics at oblique incidence and show a
direct dependence between array modal phase and attenuation constant and Fano
resonances. We thus provide a more complete picture of Fano resonances that may
lead to the design of filters, energy-harvesting devices, photodetectors, and
sensors at ultraviolet frequencies.Comment: 6 pages, 5 figure
Resonant, broadband and highly efficient optical frequency conversion in semiconductor nanowire gratings at visible and UV wavelengths
Using a hydrodynamic approach we examine bulk- and surface-induced second and
third harmonic generation from semiconductor nanowire gratings having a
resonant nonlinearity in the absorption region. We demonstrate resonant,
broadband and highly efficient optical frequency conversion: contrary to
conventional wisdom, we show that harmonic generation can take full advantage
of resonant nonlinearities in a spectral range where nonlinear optical
coefficients are boosted well beyond what is achievable in the transparent,
long-wavelength, non-resonant regime. Using femtosecond pulses with
approximately 500 MW/cm2 peak power density, we predict third harmonic
conversion efficiencies of approximately 1% in a silicon nanowire array, at
nearly any desired UV or visible wavelength, including the range of negative
dielectric constant. We also predict surface second harmonic conversion
efficiencies of order 0.01%, depending on the electronic effective mass,
bistable behavior of the signals as a result of a reshaped resonance, and the
onset fifth order nonlinear effects. These remarkable findings, arising from
the combined effects of nonlinear resonance dispersion, field localization, and
phase-locking, could significantly extend the operational spectral bandwidth of
silicon photonics, and strongly suggest that neither linear absorption nor skin
depth should be motivating factors to exclude either semiconductors or metals
from the list of useful or practical nonlinear materials in any spectral range.Comment: 12 pages, 4 figure
Harmonic generation and energy transport in dielectric and semiconductors at visible and UV wavelengths: the case of GaP
We study inhibition of absorption, transparency, energy and momentum
transport of the inhomogeneous component of harmonic pulses in dielectrics and
semiconductors, at visible and UV wavelengths, focusing on materials like GaP.
In these spectral regions GaP is characterized by large absorption, metallic
behavior or a combination of both. We show that phase locking causes the
generated inhomogeneous signals to propagate through a bulk metallic medium
without being absorbed, that is occurs even in centrosymmetric materials via
the magnetic Lorentz force, and that the transport of energy and momentum is
quite peculiar and seemingly anomalous. These results make it clear that there
are new opportunities in ultrafast nonlinear optics and nano-plasmonics in new
wavelength ranges.Comment: 16 pages, 5 figures, 1 vide
Viscoelastic optical nonlocality of low-loss epsilon-near-zero nanofilms
Optical nonlocalities are elusive and hardly observable in traditional
plasmonic materials like noble and alkali metals. Here we report experimental
observation of viscoelastic nonlocalities in the infrared optical response of
doped cadmium-oxide, epsilon-near-zero nanofilms. The nonlocality is detectable
thanks to the low damping rate of conduction electrons and the virtual absence
of interband transitions at infrared wavelengths. We describe the motion of
conduction electrons using a hydrodynamic model for a viscoelastic fluid, and
find excellent agreement with experimental results. The electrons elasticity
blue-shifts the infrared plasmonic resonance associated with the main
epsilon-near-zero mode, and triggers the onset of higher-order resonances due
to the excitation of electron-pressure modes above the bulk plasma frequency.
We also provide evidence of the existence of nonlocal damping, i.e., viscosity,
in the motion of optically-excited conduction electrons using a combination of
spectroscopic ellipsometry data and predictions based on the viscoelastic
hydrodynamic model.Comment: 19 pages, 5 figure
Harmonic Generation in Metallic, GaAs-Filled Nanocavities in the Enhanced Transmission Regime at Visible and UV Wavelengths
We have conducted a theoretical study of harmonic generation from a silver
grating having slits filled with GaAs. By working in the enhanced transmission
regime, and by exploiting phase-locking between the pump and its harmonics, we
guarantee strong field localization and enhanced harmonic generation under
conditions of high absorption at visible and UV wavelengths. Silver is treated
using the hydrodynamic model, which includes Coulomb and Lorentz forces,
convection, electron gas pressure, plus bulk X(3) contributions. For GaAs we
use nonlinear Lorentz oscillators, with characteristic X(2) and X(3) and
nonlinear sources that arise from symmetry breaking and Lorentz forces. We find
that: (i) electron pressure in the metal contributes to linear and nonlinear
processes by shifting/reshaping the band structure; (ii) TEand TM-polarized
harmonics can be generated efficiently; (iii) the X(2) tensor of GaAs couples
TE- and TM-polarized harmonics that create phase-locked pump photons having
polarization orthogonal compared to incident pump photons; (iv) Fabry-Perot
resonances yield more efficient harmonic generation compared to plasmonic
transmission peaks, where most of the light propagates along external metal
surfaces with little penetration inside its volume. We predict conversion
efficiencies that range from 10-6 for second harmonic generation to 10-3 for
the third harmonic signal, when pump power is 2GW/cm2
- …