9 research outputs found

    The Dark Side of Electroweak Naturalness Beyond the MSSM

    Get PDF
    Weak scale supersymmetry (SUSY) remains a prime explanation for the radiative stability of the Higgs field. A natural account of the Higgs boson mass, however, strongly favors extensions of the Minimal Supersymmetric Standard Model (MSSM). A plausible option is to introduce a new supersymmetric sector coupled to the MSSM Higgs fields, whose associated states resolve the little hierarchy problem between the third generation squark masses and the weak scale. SUSY also accomodates a weakly interacting cold dark matter (DM) candidate in the form of a stable neutralino. In minimal realizations, the thus-far null results of direct DM searches, along with the DM relic abundance constraint, introduce a level of fine-tuning as severe as the one due to the SUSY little hierarchy problem. We analyse the generic implications of new SUSY sectors parametrically heavier than the minimal SUSY spectrum, devised to increase the Higgs boson mass, on this little neutralino DM problem. We focus on the SUSY operator of smallest scaling dimension in an effective field theory description, which modifies the Higgs and DM sectors in a correlated manner. Within this framework, we show that recent null results from the LUX experiment imply a tree-level fine-tuning for gaugino DM which is parametrically at least a few times larger than that of the MSSM. Higgsino DM whose relic abundance is generated through a thermal freeze-out mechanism remains also severely fine-tuned, unless the DM lies below the weak boson pair-production threshold. As in the MSSM, well-tempered gaugino-Higgsino DM is strongly disfavored by present direct detection results.Comment: 41 pages, 8 figures, references adde

    Extraordinary Phenomenology from Warped Flavor Triviality

    Get PDF
    Anarchic warped extra dimensional models provide a solution to the hierarchy problem. They can also account for the observed flavor hierarchies, but only at the expense of little hierarchy and CP problems, which naturally require a Kaluza-Klein (KK) scale beyond the LHC reach. We have recently shown that when flavor issues are decoupled, and assumed to be solved by UV physics, the framework's parameter space greatly opens. Given the possibility of a lower KK scale and composite light quarks, this class of flavor triviality models enjoys a rather exceptional phenomenology, which is the focus of this letter. We also revisit the anarchic RS EDM problem, which requires m_{KK} > 8 TeV, and show that it is solved within flavor triviality models. Interestingly, our framework can induce a sizable differential t \bar{t} forward-backward asymmetry, and leads to an excess of massive boosted di-jet events, which may be linked to the recent findings of the CDF collaboration. This feature may be observed by looking at the corresponding planar flow distribution, which is presented here. Finally we point out that the celebrated standard model preference towards a light Higgs is significantly reduced within our framework.Comment: 6 pages, 3 figures. Updated the EDM bound on the anarchic scenario; extended discussion on the KK gluon's width, discovery potential and resulting dijet signal; matches published versio

    CP violation Beyond the MSSM: Baryogenesis and Electric Dipole Moments

    Full text link
    We study electroweak baryogenesis and electric dipole moments in the presence of the two leading-order, non-renormalizable operators in the Higgs sector of the MSSM. Significant qualitative and quantitative differences from MSSM baryogenesis arise due to the presence of new CP-violating phases and to the relaxation of constraints on the supersymmetric spectrum (in particular, both stops can be light). We find: (1) spontaneous baryogenesis, driven by a change in the phase of the Higgs vevs across the bubble wall, becomes possible; (2) the top and stop CP-violating sources can become effective; (3) baryogenesis is viable in larger parts of parameter space, alleviating the well-known fine-tuning associated with MSSM baryogenesis. Nevertheless, electric dipole moments should be measured if experimental sensitivities are improved by about one order of magnitude.Comment: 33 pages, 6 figure

    The CXCL12Îł Chemokine Displays Unprecedented Structural and Functional Properties that Make It a Paradigm of Chemoattractant Proteins

    Get PDF
    The CXCL12γ chemokine arises by alternative splicing from Cxcl12, an essential gene during development. This protein binds CXCR4 and displays an exceptional degree of conservation (99%) in mammals. CXCL12γ is formed by a protein core shared by all CXCL12 isoforms, extended by a highly cationic carboxy-terminal (C-ter) domain that encompass four overlapped BBXB heparan sulfate (HS)-binding motifs. We hypothesize that this unusual domain could critically determine the biological properties of CXCL12γ through its interaction to, and regulation by extracellular glycosaminoglycans (GAG) and HS in particular. By both RT-PCR and immunohistochemistry, we mapped the localization of CXCL12γ both in mouse and human tissues, where it showed discrete differential expression. As an unprecedented feature among chemokines, the secreted CXCL12γ strongly interacted with cell membrane GAG, thus remaining mostly adsorbed on the plasmatic membrane upon secretion. Affinity chromatography and surface plasmon resonance allowed us to determine for CXCL12γ one of the higher affinity for HS (Kd = 0.9 nM) ever reported for a protein. This property relies in the presence of four canonical HS-binding sites located at the C-ter domain but requires the collaboration of a HS-binding site located in the core of the protein. Interestingly, and despite reduced agonist potency on CXCR4, the sustained binding of CXCL12γ to HS enabled it to promote in vivo intraperitoneal leukocyte accumulation and angiogenesis in matrigel plugs with much higher efficiency than CXCL12α. In good agreement, mutant CXCL12γ chemokines selectively devoid of HS-binding capacity failed to promote in vivo significant cell recruitment. We conclude that CXCL12γ features unique structural and functional properties among chemokines which rely on the presence of a distinctive C-ter domain. The unsurpassed capacity to bind to HS on the extracellular matrix would make CXCL12γ the paradigm of haptotactic proteins, which regulate essential homeostatic functions by promoting directional migration and selective tissue homing of cells

    HEFT2013 - Higgs Effective Field theories

    No full text

    Molecular rules for chemo- and regio-selectivity of Candida antarctica lipase B in peptide acylation reactions

    No full text
    International audienceThe chemo- and regio-selectivity of the lipase B of Candida antarctica (CALB) in peptide acylation by oleic acid was investigated combining experimental and theoretical methodologies. Molecular dynamics and docking simulations were performed to study the selectivity of CALB toward the dipeptide Lysine-Serine at the molecular level. To this end, a model that mimics the acyl-enzyme system was built from CALB crystallographic structure and optimized then to be used as docking target. One main orientation of the peptide within the catalytic cavity was obtained. The lysine side chain was observed to enter the cavity, placing the s-amino group as to be acylated near the catalytic residues. This result was consistent with the N-acylation experimentally observed, showing the robustness of the model. Docking simulations were then applied to the peptides Lysine-Tyrosine-Serine, Serine-Tyrosine-Lysine and Leucine-GlutamineLysine-Tryptophan aiming to predict the selectivity of the reaction. Whatever the peptidic sequence and its constitutive amino acids, the models suggested the preferential N-acylation of the lysine side chain. These theoretical results were in perfect accordance with experimental data showing that Ns-oleoyl-Lys derivatives were the major products
    corecore